MATH 320, WEEK 6:
Linear Systems, Gaussian Elimination,

Coeflicient Matrices

We will now switch gears and focus on a branch of mathematics known
as linear algebra. There are a few notes worth making before beginning:

e Linear algebra is a distinct branch of mathematics from differential
equations—in fact, there are no derivatives at alll We will see later
in the course that the applications of linear algebra to the study of
differential equations are plentiful, but we can be forgiven if we do not
see the connections immediately. For now, we will treat the subject
matter as its own distinct entity.

e [t is no coincidence that we have focused much attention on linear
differential equations and are now transitioning into the study of linear
algebra. The studies over the next five-to-six weeks will allow us to
answer questions about general-order linear differential equations—i.e.
not just first-order linear differential equations, which could be solved
by using the trick of finding an integrating factor.

e While linear algebra is very important in the study of linear (and
nonlinear!) differential equations, its applications extend far beyond
that into areas such as statistics, economics, computer science, control
theory—pretty well anywhere there is an equation to be solved. It is
one of the foundational branches of mathematics—it simply cannot be
escaped.

To motivate the study of linear algebra, consider being asked to solve
the system of linear equations

r—y=4
22 + 3y = 3.

This is a linear system of two equations in two unknowns (x and y). By a
solution to this system, we mean a set of values x and y which satisfy both
equations simultaneously. How could we handle something like this?

Our first observation is that, just like with differential equations, it is
exceptionally easy to verify whether something is a solution to given a given



system of equations—all we have to do is plug the proposed solution into
the given equations. For instance, suppose we have the proposed solutions
(a) (z,y) = (1,1), (b) (z,y) = (4,0), and (c) (z,y) = (3,—1). We can see
easily that the first proposed solution is not a solution since x = 0, y = 0
does not satisfy either equation. For the second proposed solution, we can
see that (4) — (0) = 4 so that the first equation is satisfied, but it is not a
solution because 2(4) + 3(0) = 8 # 3. Only the third proposal works, since
(3) = (—1) =4 and 2(3) + 3(—1) = 3. In fact, this is the unique solution of
the set of equations.

If we were asked to solve this without knowing the solution, we would
not find ourselves particularly overwhelmed. We could simply solve for z (or
y) in one of the equations, and then substitute this into the other equation.
This would solve for one of the variables, and the remaining equation would
allow us to solve for the other. For this example, we have

r—y=4 — x=4+4y
so that
20+3y=3 = 24+y)+3y=3
= 8+2y+3y=3 = y=-L
Back substitution yields

r=44y=4+(-1)=3.

Remark: It is worth taking a step back and considering what it means
for a system of equations to be linear. It is analogous to what we mean by
a graph being linear (a line, i.e. y = mz +b) or a differential equation being
linear. We simply mean that the unsolved variables of interest appear in
their own terms (i.e. are separated by addition or subtraction) and are not
allowed to be modified by anything more complicated than a multiplicative
constant. Examples of terms which are nonlinear are:

1. Vz
2. sin(x)
3. 1/x

or even terms involving more than one unsolved variable such as zy or y*.
These terms will be called nonlinear, as they would have been if they involved
the unknown function y(x) (or any of its derivatives) during our differential



equations portion of the course. Just as in the case of differential equations,
nonlinear equations will be much harder to solve than linear ones.
For instance, consider being asked to solve the following nonlinear equa-
tion in a single variable:
e ¥ =ux.

Simply graphing the curves y = e~* and y = x shows us that there must be
a solution to the expression, but what is it? It certainly cannot be found
by rearranging the expression into the form x equals to something, since no
algebraic rearrangement permits us to isolate x. The best method we have
(and what your computer uses) is numerical approximation using something
such as Newton’s method.

We will see that with linear systems such problems simply do not arise.
Through our study of linear algebra, we will see that we are able to develop
methods which allow us to firmly answer such questions for linear systems—
and answer many of questions about the systems as well.

1 Gaussian Elimination

Now consider a more complicated system of equations. Suppose we are asked
to solve the following system of three equations in three unknowns:

r—2y+z=4
—3r+y+22=13
rz+y—z=—6.

We could still (and always will be able to) follow our earlier intuition of
solving for one variable at a time, and then using back substitution. That
is to say, we could follow the following algorithm:

1. Solve for x (in terms of y and z) in the first equation.
2. Substitute this result in the second equation.

3. Solve for y (in terms of z) in the second equation.

4. Substitute this result in the third equation.

5. Solve for z.

6. Substitute z back in to solve for y.

7. Substitute z and y back in to solve for z.



This method would work, but would take a little bit of time. We would
like to develop a short-hand method for going through this process which
requires less writing—Ilike synthetic division for long-division of polynomials,
or the u/du, dv/v integration table for integration by parts.

Our primary observation is that when we solve for = in the first equation
and substitute it in the second, what we are really doing is eliminating =
from the second equation. This is not the only avenue available to us for
accomplishing this task. We might notice that we could simply add three of
the first equation to the second equation and get

3(z—2y+2)=34)
+(—3z +y+ 2z) = (13)

—by + 5z = 25.

This equation has the same solution set as the original set—we have not
changed anything. We could check that we could have obtained the second
equation by solving for = directly in the first equation and substituting into
the second. This is the same process!

If we perform this process of eliminate to the third equation as well, we
have

(r—2y+2)=(4)
+(=D(z +y—=2)=—(-6)

—3y + 2z = 10.

Replacing the corresponding original equations with these new (equivalent)
ones, we have the new system

r—2y+z=4
-5y +52=25
-3y + 2z = 10.

We notice that the second two equations represent a system of two equations
in two unknown, like we have already dealt with. We will, however, continue
with our current intuition. We want to eliminate the variable y from the
last equation by finding multiples of the last two equations which eliminate



it. It is more complicated than the previous example, but we have

3(=5y + 5z) = 3(25)
—5(—3y + 22) = —5(10)

This clearly implies that z = 5. We can substitute this back into —3y+2z =
10 to get —3y +2(5) = 10 = y = 0. We then have z +2(0) + (5) = 4 =
x = —1. It follows that the solution is (x,y, z) = (—1,0,5).

This certainly does not seem like less work, but consider the following
observation: at each one of these steps, the basic structure of the equations
has remained the same. That is to say, at each step we have three equations
in three unknowns (z, y, and z). The general structure for such a system is

a1 + a2y + a3z = a4
bix + boy + b3z = by

C1ZT + CY + c32 = ¢4.

We have performed a number of operations which have changed the individ-
ual equations, but the structure has not changed, only the coefficients of x,
y, and z have. If we could find a short-hand way to represent such systems
without having to write x, ¥y and z at every step, we would save ourselves a
lot of writing!

To that end, we define the coefficient matrix M to be the grid (grid-
lines not shown!) with the coefficients of the linear system in the appropriate
boxes, i.e.

ar a2 a3 | a4
M= b by b3]|by

1 C2 (€3 |4

The general idea behind this representation of a linear system is that we will
be able to do the same intuitive steps outlined above without writing x, ¥,
and z at every step. Let’s formalize the operations we just used to find the
solution (x,y,z) = (—1,0,5) and systemize the procedure.

We are allowed to perform the following elementary row operations
on the coefficient matrix M:

1. Interchange any two rows R; and R;.

2. Scale rows R; by a non-zero constant.



3. Add two rows R; and R; to form a new row.

The purpose of formally stating these operations is that we can perform
them on the coefficient matrix to eliminate variables from specific lines with-
out changing the solution set of the corresponding linear system of equations.
It is very important that we apply these operations properly and recognize
how the correspond to the underlying linear system—otherwise, we will end
up with the incorrect answer.

Let’s apply these operations to the previous example, with the ultimate
goal of eliminating x from the second and third line, and then eliminating
y from the third line. We have

1 -2 1|4 o —sh 1 -2 1] 4
-3 1 2|13 i Y 5 5 |25
1 1 —1|-6 1 1 —1|-6
, 1 -2 1| 4 , 1 -2 1| 4
R3:R1—R3 R3:3R2—5R3
N 0 -5 5|25 N 0 -5 5| 25
0 —3 21|10 0 0 -5|-25

We recall that the last line corresponds to (0)x + (0)y — 5(z) = —25 so that
we have z = 5. We could back substitute this to get our previous solution.

This process is called Gaussian elimination and the matrix form we
have obtained is called row echelon form. In order to be in row echelon
form, we need to have that:

1. Every row of zeroes (if applicable) appears below every line with non-
zero entries.

2. Every row R; (except for the last row) is followed by a row R;;; which
satisfies the following: if row R; has zeroes in its first n columns, then
row R;i1 has zeroes in (at least) its first n 4+ 1 columns.

It should be obvious that this corresponds to the structure we expect from
eliminating variables. If we eliminate x from all but the first equation, the
resulting coefficient matrix will have zeroes in the first column of every row
except the first.

Let’s continue this example a little further, though. It turns out that
the back substitution steps back also be carried out by using elementary
row operations by eliminate the variable z from the first two equations, and
then eliminating y from the first. We have

. 1 -2 1] 4 [P 1 -2 14
3T 0 -5 5|25 2T 2 0 -5 00
0 0 1|5 0 0 1|5



Ra=—(1(5)R; 1 -2 114 R{=R;+2R>—R3
0O 1 0]0 —
0 0 115 5

This process is called Gauss-Jordan elimination and the matrix form
we have obtained is called row-reduced echelon form. In order to be in
row-reduced echelon form, we need to have that:

1. The matrix is in row echelon form.
2. The leading (i.e. first) coefficient in each row is a one.
3. In each column which has a leading one, all other coefficients are zero.

The advantage of having a matrix in row-reduced echelon form should
be obvious. The underlying system of equations corresponding to the final
matrix form is

Dz + (0)y + (0)z = —1
0)z+ 1)y +(0)z=0
0)z+ (0)y + (1)z = 5.

In other words, it directly gives the solution (z,y,z) = (—1,0,5).

2 Other Possibilities

So far, the examples we have seen have had a single solution. We have not
given any consideration as to whether, given an arbitrary system of linear
equations, we always end up with a single solution. Reconsider the previous
example, with a slight modification to the last equation:

r—2y+z=4
—3r+y+2z=13
r—2z=—0.

As with the previous example, we set up our coefficient matrix and begin
performing Gaussian elimination. We have:

1 -2 1 4 1 -2 1 4
R’213R1+R2

-3 1 2 |13 — 0 -5 5 |25

1 0 —-1]-6 1 0 —-1|-6



1 -2 1]4 P 1 -2 1|4
0 -5 5|25 LN 0 -5 5125
0 —2 2110 0 0 0|0

Something appears to have gone terribly wrong. The last equation corre-
sponds to the equation 0 = 0, but this does not tell us anything at all
meaningful at all. The remain two equations are underdetermined. We
have three equations to solve for, but only two meaningful equations within
which to do so.

To answer what is going on in this example, let’s consider some geo-
metrical points in two dimensions. A linear system of two equations in two
unknowns looks like

Ré:Rl —R3

a1T + a2y = as
bix + b2y = bs.

We can rearrange these into two equations of the familiar form y = max + b.
That is to say, they are lines, and the solution corresponds to the intersection
of these lines. It should not take much geometrical convincing that there
are three possibilities:

1. The lines intersect at a unique point, i.e. there is a single solution.

2. The lines are parallel and do not intersection, i.e. there are no solu-
tions.

3. The lines are parallel and overlap, i.e. there are an infinite number of
solutions.

Although the situations are more difficult to visualize, this intuition
generalizes to an arbitrary number of dimensions! It is always the case
that a linear system of equations has either no solution, one solution, or an
infinite number of solutions. It is impossible for a linear system of equations
to have exactly two solutions, or twelve solutions, or a thousand solutions.

To see which case we are in for our previous example, let’s consider the
two remaining equations. We have

r—2y+z=4
—by + 5z = 25.

Let’s continue to put this into row-reduced echelon form. We have

R,=—(1/5)R 1 -2 1714 R,=R1+2R 10 —1)-6
L G 0 1 —-1|-5 S G 01 —1|-5
0 0 010 00 010



This corresponds to the system
r—z=—6
Yy—z=—9.
It should not be hard to convince ourselves that this system has an infinite

number of solutions. It we choose the parametrization z = t, we have
solution set given by

r=-6+1
y=-5+t
z =1.

This was obtained by subbing z = ¢ into the previous expressions and
rearranging. What this equation tells us is that any value of ¢ in the above
expression corresponds to a solution of the system. For instance, if we select
t = 0, we have the point (z,y,z) = (—6,—5,0), which we can easily show
satisfies the original system of equations. If we pick t = 3, we have the point
(x,y,2) = (—3,—2,3), which again can easily be seen to be a solution of the
original system of equations. The really important point to recognize is that
any t value will work, there is an infinite number of solutions. This is the
general case when systems are underdetermined—i.e. when there are more
variables to solve for than equations to solve with.

To see what else can happen, consider the (again) slightly modified sys-
tem of equations

rT—2y+z=4
—3r+y+2z=13
T —z=-—bh.

we set up our coefficient matrix and begin performing Gaussian elimination.
We have:

1 -2 114 o 2 1|4
R2=5R1+R2
-3 1 2 |13 — 0 -5 5 |25
1 0O —-11]-5 1 0 -—-1|-5
R.,=Ri—R -2 114 R.,=2R>—5R -2 114
LT 5 5|25 I -5 525
0 -2 219 0O 0 0|5



This looks very similar to our previous example, and we might be tempted
to continue on by parametrizing the first two equations. It will all be in vain,
however. We recall that the last equation means

(0)z 4+ (0)y + (0)z = 5.

In other words, the equation says 0 = 5, which is a mathematically nonsen-
sical statement. It does not matter what the first two equations evaluate
to, there can be no solution to this system of equations because there is no
solution to the last equation. We will say that the system is inconsistent,
which means that there is no solution.

This is the third possible case. And the somewhat remarkable thing
about linear systems is that is all that can happen. We can either have:

1. A unique solution—in which case we can find it;

2. An infinite number of solutions—in which case we can parametrize the
set of solutions; or

3. No solution—in which case we say the system is inconsistent.

There are no other cases to consider, and no other methods to learn. Per-
forming Gauss-Jordan elimination to find the row-reduced echelon form is
sufficient to determine which case we are in, and if there are solutions, it
will find them. All we need to do is practice!
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