
MATH 320, WEEK 7:
Matrices, Matrix Operations

1 Matrices

We have introduced ourselves to the notion of the grid-like coefficient ma-
trix as a short-hand coefficient place-keeper for performing Gaussian elim-
ination. It turns out that matrices turn up in a wide range of applications
not restricted to solving linear systems of equations. In order to see how
they arise, however, we will have to first define general matrices, their basic
properties, and the basic operations we can perform on them.

Definition 1.1. The grid structure A = [aij ], i = 1, . . . ,m, j = 1, . . . , n,
is called a matrix of dimension m × n (or simply an m-by-n matrix).
Explicitly, we have

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 .

There are a few notes worth making:

• By convention, we will use capital letters from the early part of the
alphabet to denote matrices (e.g. A, B, C, etc.).

• All of the matrices we will see in this course will have real-valued
(or integer-valued) coefficients. In other words, we will have aij ∈ R
(or aij ∈ Z). There are, however, a significant number of applica-
tions which require complex-valued matrix coefficients (e.g. quantum
physics!). Most of the concepts and operations we will introduce will
have natural extensions to that setting.

• By convention, the first index of the dimension corresponds to the
number of rows, and the second index corresponds to the number
of columns. For example, a 5-by-3 matrix will a matrix with five
rows and three columns, not three rows and five columns. We will
also follow the convention that the entry aij will correspond to the
element in the ith row and jth row. It will be important to remember
this order!
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• A matrix is called a square matrix if it has the same number of rows
and columns (i.e. it has dimension n × n, is an n-by-n matrix, etc.).
Square matrices will have special properties we will investigate later
in the week.

We will be interested in defining operations on matrices. In many ways,
the operations we will define for matrices will be the same as those defined
for numbers. That is to say, we are interested in such things are addition
(e.g. A+B), subtraction (e.g. A−B), multiplication (e.g. A ·B), exponen-
tiation (e.g. A2), etc., of matrices. This is not a coincidence, but there are
subtleties of which we will have to be aware.

The most basic operation we can perform is to take the transpose, which
is defined in the following way.

Definition 1.2. Let A be an m-by-n matrix with entries A = [aij ]. Then
the transpose of A is denoted AT and has entries AT = [aji].

In other words, we simply switch the indices of the entries. An entry in
the 5th row and 1st column of A will be in the 1st row and 5th column of
AT . For example, for the matrix

A =

 2 −1
0 5
1 −1


has the transpose

AT =

[
2 0 1
−1 5 −1

]
.

It should be obvious from both the definition and the example that, if A is
an m-by-n matrix, then AT will be a n-by-m matrix. Nevertheless, it is very
important to remember this fact! When performing matrix operations, it is
important to make sure we are considering matrices of the right dimension.

2 Matrix Addition

The first and most basic algebraic operation we can be define for matrices
is matrix addition.

Definition 2.1. Let A and B be two m-by-n matrices with entries A = [aij ],
B = [bij ]. Then the matrix A + B is defined to be the m-by-n matrix with
entries A + B = [aij + bij ].
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Example: Find the matrix A + B for

A =

[
2 −3 0
1 0 −1

]
and B =

[
1 1 1
0 7 −1

]
.

Solution: It is just a matter of performing element-wise addition. We
have

A + B =

[
2 + 1 (−3) + 1 (0) + 1

1 + (0) (0) + 7 (−1) + (−1)

]
=

[
3 −2 1
1 7 −2

]
.

The only really important note to make about matrix addition is that
the matrices being added must have exactly the same dimensions. We are
not allowed, for instance, to add a 2-by-6 matrix to a 3-by-5 matrix, or even
a 2-by-6 matrix to a 2-by-5 matrix. Passing this test, however, the procedure
is exactly as easy as component-wise addition.

3 Matrix Multiplication

To motivate the discussion of matrix multiplication, let’s consider first of all
multiplying a matrix by a scalar value. That is to say, let’s consider the case
of multiply a matrix by a number, i.e. cA. We have the following definition.

Definition 3.1. Let A be an m-by-n matrix and c ∈ R be a real number.
Then the matrix cA is define to be the matrix with entries cA = [caij ].

That it to say, we simply multiply each entry in the matrix by the constant
c. For instance, if we want to compute the matrix 2A or (−1)A for

A =

[
2 −3 0
1 0 −1

]
we can easily evaluate

2A = 2

[
2 −3 0
1 0 −1

]
=

[
4 −6 0
2 0 −2

]
and

(−1)A = (−1)

[
2 −3 0
1 0 −1

]
=

[
−2 3 0
−1 0 1

]
.
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Now that we have seen matrix operations which amounted to performing
operations component-wise on the matrices involved, we might wonder how
far this intuition extends in expanding on system of matrix algebra. In
particular, we might wonder if general matrix multiplication can be defined
in this manner. That is to say, if we have two matrices, A and B, can we
compute their product A · B by simply taking the product of each element
component-wise?

The answer, unfortunately, is a pronounced NO. The definition of ma-
trix multiplication is more complicated than the procedure we have de-
fined for matrix addition and scalar multiplication. But we will see as the
course progresses that the definition we introduce will have a significantly
higher number of applications than the naive notion of multiplying matrices
component-wise.

Definition 3.2. Let A and B be matrices with dimension m-by-p and p-
by-n respectively. Then the matrix A ·B (or simply AB) is the matrix with
entries

A ·B =

[
p∑

k=1

aikbkj

]
.

Note: The more common intuition of matrix multiplication is that we
multiply the elements of the ith row of A by the elements of the jth column
of B, add the results, and place the final product in the ith row and jth

column of the new matrix.
For example, consider the matrices

A =

[
−2 1 0 1
1 1 −2 −1

]
and B =


3 5
2 0
1 −3
1 1

 .

Then the matrix A ·B is given by

A ·B =

[
−2 1 0 1
1 1 −2 −1

]
3 5
2 0
1 −3
1 1


=

[
(−2)(3) + (1)(2) + (0)(1) + (1)(1) (−2)(5) + (1)(0) + (0)(−3) + (1)(1)

(1)(3) + (1)(2) + (−2)(1) + (1)(−1) (1)(5) + (1)(0) + (−2)(−3) + (1)(−1)

]
=

[
−3 −9
2 10

]
.
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There are a few notes worth making about this process:

• As with matrix addition, the dimension of the matrices involved will
be very important in determining whether matrix multiplication can
be applied to them. Since we are multiplying across the columns of A
and the rows of B, we will need the number of columns of A and rows
of B to match!

• We might notice that the dimension of the matrix which resulted from
the multiplication operation is different than either of the original
matrix. We can reason basically that the matrix which results from
the multiplication of an m-by-p matrix and a p-by-n is necessarily an
m-by-n matrix. For instance, if we multiply a 2-by-6 matrix and a
6-by-8 matrix, the resulting matrix will always be a 2-by-8 matrix,
regardless of the particular entries. The trick is easy: remove the
interior indices!

• An immediate result of these observations is that matrix multiplication
is not commutative. That is to say, in general, we have that A · B 6=
B · A. This is a significant difference between matrix multiplication
and the intuition guiding multiplication of numbers (where we trivially
have a·b = b·a). Nevertheless, we can clearly see that, for the previous
example, we have

B ·A =


3 5
2 0
1 −3
1 1

[ −2 1 0 1
1 1 −2 −1

]

=


−1 8 −10 −2
−4 2 0 2
−6 −2 6 4
−1 2 −2 0

 .

This matrix does not even have the same dimensions as the matrix
obtained from multiplying in the other order! (Worse still, in general,
matrix multiplication may not even have been defined in the other
direction.)

• A result of the previous observation is that square matrices are par-
ticularly nice for multiplying. If we multiply square matrices (of the
same dimension) we obtain a matrix of the same dimension. It will
be important to remember, however, that square matrices are still not
commutative (i.e. A ·B 6= B ·A in general).
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4 Vectors

Matrices may seem like a foreign concept at first glance, but if we think a
little bit we may realize that we have already seen matrices in other contexts.
Matrices with only a single relevant dimension (i.e. an n-by-1 or 1-by-n
matrix) commonly go by another name: they are called vectors.

Definition 4.1. A 1-by-n matrix is called an n-dimensional row vector
and an n-by-1 matrix is called an n-dimensional column vector.

Notes:

• Vectors are commonly denoted with boldface (e.g. v, w, etc.) or with
a small arrow overtop (e.g. ~v, ~w, etc.). The text uses v. In lecture, I
will use ~v (due to the difficulty in writing bold-face with chalk!).

• Since vectors only have one relevant dimension, they will be indexed
with a single index (i.e. ~v = [vi]).

• The distinction between row and column vectors is clear from explicitly
writing out the form of the matrices. For a row vector, we have

~v = [v1 v2 · · · vn]

while for a column vector we have

~v =


v1
v2
...
vn

 .

We will encounter vectors in a number of contexts throughout the re-
mainder of this course (including when we revisit differential equations) but
we will not study them in depth until a few weeks from now. It is worth
noting now, however, that the matrix operations we have defined for ma-
trices are also valid for vectors. In fact, we may have seen a few of them
already in earlier algebra, computer science, or physics courses.

Definition 4.2. Given a n-dimensional vectors ~v = [v1 v2 · · · vn] and
~w = [v1 v2 · · · vn], and a constant c ∈ R, the following operations are
defined:

1. vector addition: ~v + ~w = [vi + wi];

6



2. vector scalar multiplication: c~v = [cvi]; and

3. dot product: ~v · ~w =
∑n

i=1 viwi.

The key observation here is that these are exactly the same operations
we have previous defined for matrices! The dot product may appear different
than anything we have seen so far, but it can in fact always be written as a
matrix multiplication operation by taking one or the other of ~v or ~w to be its
transpose (i.e. writing ~vT ~w or ~v ~wT ). The only difference after that is that
we have dropped the matrix notation for the end result. (Since multiplying
a 1-by-n matrix by an n-by-1 matrix produces a 1-by-1 matrix, it is a pretty
trivial matrix!)

For example, if we take ~v = [1 2 − 1]T , ~w = [0 − 1 3]T , and c = 5, then
we have

~v + ~w =

 1
2
−1

+

 0
−1
3

 =

 1
1
2

 ,

c~v =

 5
10
−5

 , c~w =

 0
−5
15

 ,

and

~v · ~w = ~vT ~w =
[

1 2 −1
]  0
−1
3

 = (1)(0) + (2)(−1) + (−1)(3) = −5.

5 Linear Systems

One immediate application of vectors and the matrix multiplication opera-
tion we have defined comes from reconsidering the linear systems we stud-
ied last week. If we define the m-by-n matrix A = [aij ] and the vectors

~x = [x1 x2 · · · xn]T and ~b = [b1 b2 · · · bn]T , we have that A~x = ~b gives
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1
x2
...
xn

 =


b1
b2
...
bn

 .
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If we multiply this out, we obtain

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

This is exactly the general form of a linear system of m equations in n un-
knowns! It should come as no surprise then that we will prefer the shorthand
notation A~x = ~b to the explicit form above. We will revisit this matrix for-
mulation later in the course (although we will need to define a few further
matrix operation first!).

6 Special Matrices

There are several matrices which will turn out to have particularly nice
properties. The first is a matrix which is particularly well-behaved under
the matrix addition operator

Definition 6.1. The zero matrix of dimension m-by-n is denoted 0 and
is defined as the n-by-m matrix with zeroes in every entry.

The key feature of the zero matrix is that it does not change a matrix
upon matrix addition. That is to say A + 0 = A = 0 + A for all matrices A
where matrix addition is defined.

Next, we define a square matrix which is particularly well behaved under
the multiplication operation.

Definition 6.2. The identity matrix of dimension n is denoted I and is
defined as the n-by-n matrix with entries aij = 1 if i = j and aij = 0 if
i 6= j. In other words, it has ones along the diagonal and zeroes elsewhere:

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

The identity matrix has the property that it does not change a matrix
upon matrix multiplication. For instance, if we have

I =

[
1 0
0 1

]
, and A =

[
2 −1 −2
0 3 1

]
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then

I ·A =

[
1 0
0 1

] [
2 −1 −2
0 3 1

]
=

[
(1)(2) + (0)(−1) (1)(−1) + (0)(3) (1)(−2) + (0)(1)
(0)(2) + (1)(0) (0)(−1) + (1)(3) (0)(−2) + (1)(1)

]
=

[
2 −1 −2
0 3 1

]
.

There are a few notes worth making:

1. It also holds that A · I = A for all matrices where the multiplication
operation is defined.

2. The zero and identity matrices are the matrix analogues of the real
values 0 and 1 in the sense that a+ 0 = a = 0 + a and a · 1 = a = 1 · a
for all real values a just as A + 0 = A = 0 + A and A · I = A = I · A.
We will just have to be careful that we make sure the matrices have
the correct dimensions for the operations involved!

Another square matrix which has particularly nice properties (which is
not contained in the text) are symmetric matrices.

Definition 6.3. An n-by-n matrix A is said to be symmetric if aij = aji
for all i, j = 1, . . . , n. That is to say, a matrix is symmetric if A = AT .

We will not investigate in depth the properties of symmetric matrices
for a few weeks yet. Nevertheless, we recognize that it is easy to identify
symmetric matrices. We just need to remember what the transpose is. It
is the matrix where all entries are reflected across the diagonal. For sym-
metric matrices, that reflection produces the same matrix! For example, the
matrices

A =

 −1 2 7
2 0 3
7 3 5

 and

[
0 1
1 0

]
are symmetric while the matrix

C =

 1 1 1
−1 1 −1
1 1 1


is not.
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