
MATH 320, WEEK 9:
Linear Combinations, Linear
Independence/Dependence

1 Linear Independence/Dependence

Let’s reconsider the process underlying Gaussian elimination in a little more
depth.

We saw a linear system in n equations and n unknowns could be written
as

A~x = ~b

where ~x and ~b were n-dimensional vectors and A was an n× n matrix. We
realized that if there was a matrix A−1 such that A−1A = I (i.e. if A was
invertible) then we could write the expression as

A−1A~x = A−1~b =⇒ ~x = A−1~b

and therefore solve for the vector ~x using matrix operations rather than
Gaussian elimination.

We then took a step back and asked the very important question of when
a matrix A is invertible. The computation involved in finding a general in-
verse is cumbersome, but we were able to sidestep most of it by consideration
of determinants. We were able to convince ourselves that a matrix A was
invertible if and only if det(A) 6= 0. And so we only have to compute the
determinant in order to determine whether this algebraic process of solving
linear systems of n equations in n unknowns would succeed.

Now we will consider the process from a different direction. We will
need to take a step backward in order to take a step forward. Rather than
considering matrix operations, we will reconsider the process underlying
Gaussian elimination.

Suppose we want to solve the following linear system of three equations
in three unknowns

3x1 − x2 + 4x3 = 0

x1 − x2 = 0

x1 − 2x2 − 2x3 = 0.
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This type of linear system is called homogeneous because there are no
terms which are independent of the variables of interest (x1, x2, and x3).
Homogeneous systems are easy to identify because they can be put into
the form A~x = ~0 where ~0 is the vector of all zeroes (or the appropriate
dimension).

If we perform Gaussian elimination, we find that (after omitting a few
steps!)  3 −1 4 0

1 −1 0 0
1 −2 −2 0

 −→

 1 0 2 0
0 1 2 0
0 0 0 0

 .

By now, of course, we are well practiced in using this form to determine the
solution set. We have that there is no leading one corresponding to x3, so we
set it equal to an arbitrary parameter x3 = t. Solving the other equations
gives x1 = −2t and x2 = −2t so that in vector notation we have that the
solution set is given by  x1

x2
x3

 = t

 −2
−2
1

 .

Any value of t produces a set of values for x1, x2, and x3 which satisfies the
original system of equations. We also notice that this can be written in the
condensed vector form ~x = t~v where ~v = [−2 − 2 1]T .

As an algorithm, this is a nice and tidy way to resolve the issue of vari-
ables which are not assigned to leading ones—we can apply it to any linear
system in exactly the same way and always arrive at a vector form solution
set. But it should be unsatisfying in some way since we have not given too
much consider to what is actually happening in the Gaussian elimination
process to lead to this result (until now!). In particular, we might want to
consider the questions:

1. What does it mean for a row reduced matrix to have a row of zeroes?
(And how can such a situation arise?)

2. How do we interpret a solution set that depends on vectors?

It turns out that the answer to both of these question will depend on a
mathematical construct known as vector spaces (but we are not quite
there yet).

To address the first question of how a row of zeroes can arise—the ques-
tion which will be the focus of most of this week—consider the following
reasoning:
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1. The elementary row operations which led us to a row of zeroes applied
to the rows of A. So let’s consider the rows of the matrix A individually
as vectors ~a1, ~a2, and ~a3. In other words, let’s write

A =

 3 −1 4
1 −1 0
1 −2 −2

 = A =

 3 −1 4

1 −1 0

1 −2 −2

 =

 ~a1
~a2
~a3


where ~a1 = [3 − 1 4], ~a2 = [1 − 1 0], and ~a3 = [1 − 2 − 2].

2. The only operations we were allowed to perform on the rows were

(a) switching their order (not interesting!);

(b) scaling by some nonzero factor (e.g. things like 2~a1 or −3~a2, etc.);
and

(c) adding rows (e.g. ~a1 + ~a2, ~a2 + ~a3, etc.).

If we keep track of all the elementary row operations we perform in
the Gaussian elimination process, it should not take much justification
to convince ourselves that every new row we encounter can be written
in the form

~anew = c1~a1 + c2~a2 + c3~a3 (1)

for some real values c1, c2, c3 ∈ R. That is to say, every new row ~anew
in the elimination process can be obtained by some combination or
scaling and addition of the original rows ~a1, ~a2, and ~a3. A sum of the
form (1) is called a linear combination of vectors.

3. The conditions for encountering a row of zeroes in the Gaussian elimi-
nation process is now staring us in the face. We can only obtain a row
of zeroes if there are c1, c2, c3 ∈ R not all zero such that

c1~a1 + c2~a2 + c3~a3 = ~0 (2)

(i.e. the new row, somewhere in the process of Gaussian elimination,
is the zero row). If there is a set of constants c1, c2, c3 not all equal to
zero such that (2) is satisfied, we will say the vectors {~a1,~a2,~a3} are
linearly dependent. (Otherwise, they are linearly independent.)

To verify tha the vectors ~a1,~a2,~a3 are linearly dependent for this exam-
ple, we can explicitly find the values of c1, c2, and c3 which satisfy (2). It
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can be easily seen that what we need to solve is the linear system 3 1 1
−1 −1 −2
4 0 −2

 c1
c2
c3

 =

 0
0
0

 .

This can be row reduced to give 3 1 1 0
−1 −1 −2 0
4 0 −2 0

 −→

 1 0 −1
2 0

0 1 5
2 0

0 0 0 0

 .

The solution set can be parametrized by c3 = t so that c1 = 1
2 t and c2 = −5

2 t.
The interpretation of these values is a little obscure, but we can make it
concrete by picking a convenient choice of t. In this case, t = 2 yields

{c1 = 1, c2 = −5, c3 = 2} .

In other words, we have that

(1)~a1 + (−5)~a2 + (2)~a3 = ~a1 − 5~a2 + 2~a3 = ~0.

This can be easily verified for the rows ~a1, ~a2, ~a3 given earlier! (Although
it should be pointed out that this was only one possible combination of the
rows which would work. In general, we could have picked any value of t ∈ R
and would have obtained a similar relationship between the three vectors.)

This leads to the following questions:

1. How can we determine if a set of vectors is linearly dependent?

2. What is the intuition behind a set of vectors being linear indepen-
dent/dependent? (i.e. Why should we care?)

To answer the first question, recall that finding the required constants
c1, c2, and c3 for demonstrating linear dependence was equivalent to solving

[
~a1 ~a2 ~a3

]  c1
c2
c3

 =

 0
0
0

 .

If this system has a unique solution, then that solution is c1 = c2 = c3 = 0.
Since solving a system uniquely can only be done if the matrix is invertible,
and that the matrix is invertible if and only if its determinant is non-zero, we
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have that the condition for linear independent of a set of vectors {~a1,~a2,~a3}
is

det
[
~a1 ~a2 ~a3

]
6= 0.

Conversely, a set of vectors {~a1,~a2,~a3} is linearly dependent if and only if

det
[
~a1 ~a2 ~a3

]
= 0.

For our previous example, we have∣∣∣∣∣∣
3 1 1
−1 −1 −2
4 0 −2

∣∣∣∣∣∣ = (4)

∣∣∣∣ 1 1
−1 −2

∣∣∣∣+ (−2)

∣∣∣∣ 3 1
−1 −1

∣∣∣∣
= (4) [(1)(−2)− (−1)(1)]− (2) [(3)(−1)− (−1)(1)]

= −4 + 4 = 0.

So we could have determined, without solving for the c1, c2, and c3 explicitly
that the set of vectors was linearly dependent! This intuition holds for any
set of n vectors with n components.

To investigate the second question (i.e. why we care whether a set of
vectors is linearly dependent or not), we observe that we could have written
the condition for linear dependence in a different way. We could have written

~a1 − 5~a2 + 2~a3 = ~0 =⇒ ~a3 = −1

2
~a1 +

5

2
~a2.

This does not look that meaningful at first glance, but it actually tells us a
great deal about what it means to have a row of zeroes arise in our Gaussian
elimination process. It means that all of the information contained in the
third row of A (i.e. the third equation in our system) could be stated in terms
of information contained in the first two rows (i.e. the first two equations in
our system). In fact, it can be easily verified that the linear system of two
equations

3x1 − x2 + 4x3 = 0

x1 − x2 = 0

has exactly the same solution set as the original system. Given the first two
equations, the third is completely redundant. (In fact, we could perform
this argument using any of the three rows. Given the first and third equa-
tions, adding the second adds no new information; and given the second and
third equations, adding the first adds no new information. Any two will do.)

5



Example: Show that the set of vectors {~v1, ~v2} = {(1,−2), (−1, 2)} is
linearly dependent.

Solution The set of vectors is linearly dependent if

c1~v1 + c2~v2 = 0

for c1, c2 not all zero. This is equivalent to the system[
1 −1
−2 2

] [
c1
c2

]
=

[
0
0

]
.

Our determinant test for linear independence gives∣∣∣∣ 1 −1
−2 2

∣∣∣∣ = (1)(2)− (−1)(−2) = 0

which verifies that the vectors are linearly dependent.
Graphically, for vectors in R2, it is easy to identify whether they are

linearly dependent or not. Vectors which are linear dependent must lie
on the same line or, stated another way, they must be multiples or one
another. (We will see, however, that this intuition does not always extend
to vectors in higher dimensions. While it is true that two vectors which
are multiples of one another will be linearly dependent, there are vector
sets which are simply co-planar which have the property of being linearly
dependent. For instance, the earlier set {(3,−1, 4), (1,−1, 0), (1,−2,−2)} is
linearly dependent but none of the vectors is a multiple of another.)

2 Linear Combinations and Span

In the previous section, we encountered linear combinations of two sets of
vectors which were used to describe some aspect of a problem. We found
that any solution ~x to A~x = ~b could be given in vector form as

~x = t~v

and any new row in our Gaussian elimination process had the vector form

~anew = c1~a1 + c2~a2 + c3~a3.

It is clear that linear combinations of vectors play a key role in matrix
algebra! It should not be surprising that a significant branch of the general
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study of linear algebra devotes itself to considering the properties of linear
combinations of vectors. We will pause now to briefly introduce just a few
of these important notions (which will form the basis of vector spaces).

We start with a few notes on vector notation. We will interchangeable
denote vectors as ~v = [v1 v2 · · · vn] and ~v = (v1, v2, . . . , vn), depending
on the context. It is often more convenient to write vectors with the com-
mas; however, when performing matrix operations, it will be important to
think of them as a subclass of matrices. Where there is ambiguity, we will
assume vectors are in the orientation (row or column) suitable for matrix
multiplication. We will also allow the individual vectors ~v to have arbitrary
dimension (i.e. ~v = (v1, v2, . . . , vn) ∈ Rn), although you may think of them
as two- or three-dimensional if you prefer—the intuition offered from these
dimensions will apply to larger dimensions!

Throughout the following definitions, we will consider the general (finite)
set of vectors S = {~v1, ~v2, . . . , ~vm} where m is some arbitrary (finite) integer:

• A term of the form c1~v1+ · · ·+cm~vm where c1, . . . , cm ∈ R (i.e. scaling
and summation of the vectors) is called a linear combination of the
vector set S.

• The vector set S is called linearly dependent if

c1~v1 + · · ·+ cn~vm = ~0

for some c1, . . . , cn ∈ R not all equal to zero. Conversely, if

c1~v1 + · · ·+ cn~vm = ~0

can only be satisfied for c1 = · · · = cm = 0 (all coefficients are zero)
then we will say the set is linearly independent.

• The span of S is defined as

span (S) = {~v ∈ Rn | ~v = c1~v1 + · · ·+ cm~vm for some c1, . . . , cm ∈ R} .

In other words, the span of a set of vectors is the set of all vectors
which can be reached by a linear combination of the vectors in the set.

Example 1: Show that (3, 1) is in the span of the vectors

S = {(−1,−1), (2, 3), (2,−1)} .
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Solution: In order to be in the span of S, there needs to be constants
c1, c2, c3 such that

c1

[
−1
−1

]
+ c2

[
2
3

]
+ c3

[
2
−1

]
=

[
3
1

]
.

This is equivalent to the matrix equation

[
−1 2 2
−1 3 −1

] c1
c2
c3

 =

[
3
1

]
.

We perform Gaussian elimination to get[
−1 2 2 −3
−1 3 −1 1

]
−→

[
1 0 −8 −7
0 1 −3 −2

]
.

It follows that the system has a solution for any c1 = −7 + 8t, c2 = −2 + 3t,
and c3 = t where t ∈ R is an arbitrary parameter. For instance, picking t = 0
gives (c1, c2, c3) = (−7,−2, 0), corresponding to the linear combination

(−7) · (−1,−1) + (−2) · (2, 3) + (0) · (2,−1) = (3, 1)

which can be easily verified. It should be noted that this is not the only com-
bination which will lead to the point (3, 1). If we picked t = 1 in the above
solution set, we would have obtained (c1, c2, c3) = (1, 1, 1) corresponding to
the linear combination

(1) · (−1,−1) + (1) · (2, 3) + (1) · (2,−1) = (3, 1)

which again can be easily verified. For an illustration of the linear combi-
nation corresponding to (c1, c2, c3) = (1, 1, 1), see Figure 1.

Example 2: Show that (1, 0, 1) is not in the span of

S = {(2, 5,−1), (−1,−8, 3), (1,−3,−2)} .

Solution: We need to show that the system

c1

 2
5
−1

+ c2

 −1
−8
3

+ c3

 1
−3
−2

 =

 1
0
1



8



(-1,-1)

(2,3)

(2,-1)

(-1,-1)
(2,3)

(2,-1)

(3,1)

Figure 1: The point (3, 1) can be reached as a linear combination of the
vectors (−1,−1), (2, 3), and (2,−1) and is therefore in the span of the
vectors. The combination of vectors represented in this case corresponds to
c1 = c2 = c3 = 1; however, other combinations which reach (3, 1) exist.

cannot be satisfies for any c1, c2, c3 ∈ R. The Gaussian elimination gives 2 −1 1 1
5 −8 −3 0
−1 3 2 1

 −→

 1 −3 −2 −1
0 5 5 3
0 7 7 5



−→

 1 −3 2 1
0 5 5 3
0 0 0 −4

 .

The last equation implies that the system is inconsistent, and consequently
(1, 0, 1) is not in the span of S.
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