
MATH 320, WEEK 10:
Vector Spaces, Dimension, and Basis

1 Vector Spaces

It turns out that the concepts of linear combinations, linear independence
/ dependence, and span do not only arise from performing Gaussian elim-
ination. They allow us to define and describe vector spaces, one of the
foundational building blocks of the discipline of linear algebra. We will
not fully explore these concepts, but we will make use of some of the most
importation results.

Definition 1.1. Consider a set of vectors V . We will say that V is a vector
space if:

1. For any c ∈ R and any ~v ∈ V , we have c~v ∈ V .

2. For any ~v, ~w ∈ V , we have ~v + ~w ∈ V .

This definition seems simple enough at first glance, but we shall see that
there are many subtleties which can arise. We start by making a few notes
about how vector spaces relate to our interests in this course:

• The most commonly used vector spaces (and the only ones we will be
focusing on in this class) are V = R2 and V = R3 (commonly called R-
two and R-three). Vectors in R2 take the form ~v = (v1, v2); that is to
say, they have two entries and the entries are allowed to be chosen from
the real numbers. In general, we can define the vector space V = Rn

(i.e. R-n) to be the vector space with entries ~v = (v1, v2, . . . , vn). It is
clear that we have:

1. For any c ∈ R and any ~v = (v1, . . . , vn) ∈ Rn, c~v = (cv1, . . . , cvn) ∈
Rn; and

2. For any ~v, ~w ∈ Rn, we have ~v+~w = (v1+w1, v2+w2, . . . , vn+wn) ∈
Rn.

• In full generality (which mathematicians love!), vector spaces need not
have anything to do with conventional vectors at all! For instance, the
class of continuous functions on the real number line forms a vector
space since
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1. For any c ∈ R and any continuous function f(x) on x ∈ R, we
have cf(x) is a continuous function on x ∈ R; and

2. If we have two functions f(x) and g(x) which are continuous on
x ∈ R, then f(x) + g(x) is a continuous function on x ∈ R.

We will not deal with vector spaces more general than Rn in this
course, but it is important to realize that the machinery we will develop
can be applied to more general constructs.

We have a pretty good intuitive grasp of what R2 and R3 look like. They
are the two-dimensional and three-dimensional (hyper)planes, respectively
(usually indexed and graphed as the (x, y)-plane and (x, y, z)-hyperplane,
respectively). We might wonder, therefore, what there is left to do in these
spaces.

To consider this question, we introduce the following related concept:

Definition 1.2. Consider a collection of vectors which for a vector space
V . We will say that W is a subspace of V if

1. For any ~v ∈W we have ~v ∈ V (i.e. W ⊆ V );

2. For any c ∈ R and any ~v ∈W , we have c~v ∈W ; and

3. For any ~v, ~w ∈W , we have ~v + ~w ∈W .

It follows froms points 2. and 3. that any subspace W of V is a vector
space in and of itself. Condition 1. just implies that every vector in W must
also be contained within V . By convention, in this course I will usually let
V = Rn for some n and any space W ⊆ V will be considered a subspace of
the vector space V = Rn. We also notice that, for any vector space V , it
follows that W = V and W = ∅ are subspaces of V .

Consider the following examples.

Example 1: Show that W =
{

(x, y) ∈ R2 | x + 2y = 0
}

is a subspace
of V = R2.

Solution: We have the following the following way:

1. It follows trivially that (x, y) ∈W implies (x, y) ∈ V = R2.

2. Consider c ∈ R and (x, y) ∈ W . This implies that we have c(x, y) =
(cx, cy). We want to check whether (cx, cy) ∈ W . In order to satisfy
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the requirements for entry in W we need to show that (cx)+2(cy) = 0.
In fact, we can see that

(cx) + 2(cy) = c(x + 2y) = 0

since x + 2y = 0 (because (x, y) ∈ W ). It follows that c(x, y) ∈ W as
well!

3. Consider (x1, y1) ∈W and (x2, y2) ∈W . This implies that

x1 + 2y1 = 0

x2 + 2y2 = 0.

We want to show that (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈W , i.e.
we want to show that (x1 + x2) + 2(y1 + y2) = 0. We have

(x1 + x2) + 2(y1 + y2) = (x1 + 2y1) + (x2 + 2y2) = 0

because x1 + 2y1 = 0 and x2 + 2y2 = 0. It follows that (x1, y1) +
(x2, y2) ∈W !

Since the points chosen were arbitrarily chosen, we have that W is a sub-
space of V = R2.

Example: Show that W ∗ =
{

(x, y) ∈ R2 | x + 2y = 2
}

is not a subspace
of V = R2.

Solution: It is easy to see we have (x, y) ∈ W implies (x, y) ∈ R2, so
that condition 1. is satisfies. For the second requirement 2., however, we can
see that c ∈ R and (x, y) ∈ W ∗ gives the point c(x, y) = (cx, cy). In order
for (cx, cy) ∈W , we need to show that (cx) + 2(cy) = 2 (by definition). We
can see that x + 2y = 2 implies that we have

(cx) + 2(cy) = c(x + 2y) = 2c.

This is not equal to one unless c = 1! This is enough to ruin the argument.
Since there is a value of c and a point (x, y) ∈ W (for example c = 2 and
(x, y) = (2, 0)) for which c(x, y) 6∈ W (e.g. since c(x, y) = 2(2, 0) = (4, 0)
implies x+2y = (4)+2(0) = 4 6= 2), it follows that W cannot be a subspace
of R2.

To consider what has happened in these two examples, consider Figure
1. We can see that both W and W ∗ lie within V ∈ R2 as expected and that
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both correspond to lines. So how are we supposed to differentiate between
subspaces (like W ) and sets which are not subspace (like W ∗)? The answer
is actually fairly simple. In order to satisfy c~v ∈ W , we must be able to
move around in our space W as far along straight lines as possible; however,
the line must be centered at (0, 0)! If it is not, we will pass through the set
and never meet it again. In fact, it can be easily verified graphically that
the subspace W can be represented in vector form as

W = {t(2,−1), t ∈ R} = span {(2,−1)} .

x + 2y = 0

(y = -    x)
1

2

x + 2y = 2

(y = 2 -    x)
1

2W

W*

subspace

   not a
subspace

Figure 1: Graphical representation of the set W and the set W ∗ embedded
within V ∈ R2. Although both sets represent lines, only W passes through
(0, 0) and so that it is a subspace of R2.

2 Spanning Sets, Basis and Dimension

The last examples imply that we have perhaps been a little over-zealous in
our axiomatic definition of vector spaces for R2 (and in general, Rn). What
we really need in order to define a vector space is a set of vectors which
can reach everywhere in the subspace W through the operations of scalar
multiplication and addition.

We already have the concepts required for determining how far a set
of vectors can reach: it is the span! Taking the span of a set of vectors
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amounts to taking all possible linear combinations of the vectors so we can
find all vectors which can be reached through these two operations. It turns
out that this intuition operations in both ways, which is formalized in the
following result.

Theorem 2.1. For any set of vectors S = {~v1, . . . , ~vm} ⊆ V = Rn, we
have that W = span(S) is a subspace of Rn. Furthermore, every subspace
W of V = Rn can be expressed as W = span(S) for some (finite) set S =
{~v1, . . . , ~vm}.

When the span(S) = W , we will say that the set S spans W . It is worth
noting, however, that the equality must be strict. Every vector in span(S)
must be contained in W , and every vector in W must be in span(S).

We have already seen several examples of subspaces which are generated
from vectors in exactly this way. At any rate, now we can be formal about
it. We have that the set

span {(−2,−2, 1)} = {t(−2,−2, 1), t ∈ R} ,

which describes the solution set of the original linear system, is a subspace
of V = R3. We also have that the set

span {(3,−1, 4), (1,−1, 0), (1,−2,−2)}
= {c1(3,−1, 4) + c2(1,−1, 0) + c3(1,−2,−2), c1, c2, c3 ∈ R} ,

which describes the set of possible row equivalent rows of A is a subspace
of V = R3. In other words, we have already talked about vector spaces
without realizing it.

This is a tremendous step forward in describing subspaces W of V = Rn

(and general vector spaces, as well). It says that we can describe these
spaces—which in general contain an infinite number of vectors—by consid-
ering a finite set of generating vectors. In particular, it says that that every
vector ~v in a subspace W of V ∈ Rn can be represented as

~v = c1~v1 + · · ·+ cm~vm

for some set {~v1, . . . , ~vm} ⊂ Rm and constants c1, . . . , cm ∈ R. This is pretty
sweet, but there are still a few questions we might wonder about:

1. Is the set of generating vectors {~v1, . . . , ~vm} unique?

2. If they are not unique, is there some optimal set of such vectors? (And
optimal in what sense?)
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To investigate the first question, let’s reconsider an earlier example. We
found that the span of the set S = {(3,−1, 4), (1,−1, 0), (1,−2,−2)} was a
subspace of R3 (i.e. the set W = span(S)). It is a little redundant to say
that any point in W can be reached by a linear combination of the vectors
in S—that is the definition of the space!—but we can still ask the question
of whether this is the only vector representation of the set. We will argue
that it is not. Consider the following reasoning:

• Earlier we showed that the set S = {(3,−1, 4), (1,−1, 0), (1,−2,−2)}
was linearly dependent by showing that

(3,−1, 4)− 5(1,−1, 0) + 2(1,−2,−2) = (0, 0, 0)

where clearly the coefficients of the matrices are not all equal to zero
(in fact, none are).

• This condition can be rewritten as (among other things)

(3,−1, 4) = 5(1,−1, 0)− 2(1,−2,−2). (1)

• What this says is that any representation of a vector in W which
involves the last vector ~v1 = (3,−1, 4) can be rewritten in terms of
the other two vectors ~v2 = (1,−1, 0) and ~v3 = (1,−2,−2) by using the
equation (1). It follows that we have

span {(3,−1, 4), (1,−1, 0), (1,−2,−2)} = span {(1,−1, 0), (1,−2,−2)} .

In other words, including the ~v1 in our generating set does not con-
tribute any information about W which cannot already be found by
considering just ~v2 and ~v3!

At this point, we should have some intuition about where this is going.
We would not only like to represent vector spaces by a finite set of generator
vectors, but we would also like this set to contain a minimal number of
elements. In other words, we would like to describe and transverse vector
spaces by using as little information as possible!

We have also developed some intuition on how we will reduce the number,
if indeed we can. If a set of vectors is linearly dependent, one of the vectors
(at least) can be written as a linear combination of the others. We can
remove such a vector from the set and be assured that the set which remains
spans the same space. Repeating this process must eventually lead to a set
of vectors which is linearly independent (since a singleton set is necessarily
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linearly independent). If we agree that generating sets with fewer elements
are “better” than those with a greater number of elements, we have an
answer to our second question.

The following definition captures this intuition.

Definition 2.1. A set of vector S = {~v1, . . . , ~vm} is said to be a basis of a
vector space V (or subspace W ⊂ V ) if span(S) = V and the set of vectors
in S is linearly independent.

Example: Show that B1 = {(1,−1, 0), (1,−2,−2)} is a basis of the ear-
lier defined W .

Solution: We know that span(S) = W from before, so it only remains
to show that the vectors in S are linearly independent. This means we need
to show that

c1(1,−1, 0) + c2(1,−2,−2) = (0, 0, 0)

has only the solution c1 = c2 = 0. We can write this as the linear system 1 1
−1 −2
0 −2

[ c1
c2

]
=

 0
0
0

 .

Gaussian elimination quickly gives 1 1 0
−1 −2 0
0 −2 0

 −→

 1 0 0
0 1 0
0 0 0

 .

It follows that c1 = c2 = 0 is the only solution and consequently that the
set of vectors in S is linearly independent. It follows that S is a basis of W .

There is another way to shown linear independence of a set of vectors
{~v1, . . . , ~vm} ⊂ Rn where m < n (i.e. when the number of vectors is fewer
than the number of coordinates). We have the following result.

Theorem 2.2. The set of vectors {~v1, . . . , ~vm} ⊂ Rn where m < n is linearly
independent if and only if the matrix

A =
[
~v1 ~v2 · · · ~vm

]
has some m×m submatrix for which the determinant is nonzero. Conversely,
the set {~v1, . . . , ~vm} is linearly dependent if every m×m submatrix of A has
a zero determinant.
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For the previous example, we have that

A =

 1 1
−1 −2
0 −2


and we can easily check that∣∣∣∣ 1 1

−1 −2

∣∣∣∣ = (1)(−2)− (−1)(1) = −1 6= 0

so that the vectors are linearly independent by the theorem.

That is pretty sweet, but we might still wonder about how special this
set really is. In particular, we might notice that the process we applied to
reduce the number of vectors in our spanning set was not unique to ~v3. We
could have removed ~v3 = (1,−2,−2) by noticing that

(3,−1, 4)− 5(1,−1, 0) + 2(1,−2,−2) = (0, 0, 0)

=⇒ (1,−2,−2) = −1

2
(3,−1, 4)− 5

2
(1,−1, 0).

It follows that the set B2 = {(3,−1, 4), (1,−1, 0)} also spans W . In fact, it
can easily be shown that this set is also linearly independent so that B2 is
also as basis for W . In other words, basis in general are not unique.

It might be disappointing to realize that vector spaces do not have unique
bases, but we do at least notice one element in common between the sets
B1 and B2—they have the same number of elements. In fact, we can fairly
easily convince ourselves that this must be the case. This is formalized by
the following result (and definition).

Theorem 2.3. Suppose V is a vector space with bases B1 and B2. Then
the number of elements in B1 and B2 is the same. This number if called the
dimension of V and is denoted dim(V).

This result allows us to relax a little bit. We may not be able to find a
unique basis, but at the very least we know that the number of elements
needs to minimally generate a vector space is always the same.

Let’s build on this intuition but further exploring some properties and
examples of bases:
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• The vector spaces V = R2,R3, . . . ,Rn, are often assigned the stan-
dard basis B = {~e1, ~e2, . . . , ~en} where ~ei is the vector with one in the
ith component and zeroes elsewhere. For example, in R3 we have the
standard basis B = {~e1, ~e2, ~e3} where ~e1 = (1, 0, 0), ~e2 = (0, 1, 0), and
~e3 = (0, 0, 1).

• A key feature of having a basis B = {~v1, . . . , ~vm} for a vector space V
is that each element ~v ∈ V can be written as a linear combination of
elements in the basis, i.e.

~v = c1~v1 + · · ·+ cm~vm

in exactly one way. That is to say, once the basis has been chosen,
the representation of each vector ~v ∈ V in terms of that basis is fixed.
In this way, the coefficients ci, i = 1, . . . ,m, can be thought of as the
coordinates of the vector ~v in the coordinate system implied by the
basis B.

• The concepts of linear independence, spanning sets, and bases may
seem abstract in their strict mathematical formulation, but we en-
counter the intuition almost every day in our day-to-day lives—especially
if we regularly use maps. When we consider the relationship between
two points on a map, we often make the assumptions we have just
made for bases in the mathematical realm without even realizing it.
For instance, we assume:

1. The topographical map can be described by a finite set of gen-
erating directions—in this case, the east/west (longitudinal) and
north/south (latitudinal) axes. We do not need to define the set
of points on the map (the space) individually or according to
some abstract axioms.

2. Each point can be defined uniquely with respect to this basis
(degrees of latitude and longitude). We do not need to worry
about two coordinates corresponding to the same point, or some
points in the map not being assigned a coordinate (not being able
to “reach” them).

3. This basis is minimal with respect to describing the points on the
map. That is to say, if we tried to add a new component (say,
a northwest/southeast axis) to describe the relationship of one
point to another, we would find ourselves introducing redundant
information.
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4. We need two components to the basis (longitude and latitude) to
describe this space because the map describes an essential two-
dimensional space (ignoring curvature of the Earth). If we were
to add another dimension of interest—say, to describe the posi-
tion of an airplane or a satellite—we could have to add another
coordinate to describe the height of the object as well. The idea
of adding another coordinate to describe a direction previously
not considered is exactly the concept of linear independence.

Example: Show that the set B = {(2, 0,−1), (1, 1, 0), (0, 1, 1)} is a basis
of R3.

Solution: We know that dim(R3) = 3 so that if the set B is linearly
independent it must span R3. To check linear independence, we check the
determinant ∣∣∣∣∣∣

2 1 0
0 1 1
−1 0 1

∣∣∣∣∣∣ = (2)

∣∣∣∣ 1 1
0 1

∣∣∣∣− (1)

∣∣∣∣ 0 1
−1 1

∣∣∣∣
= (2)(1)− (1) = 1 6= 0.

It follows that B is linearly independent and therefore is a basis of R3.

3 Matrix-Related Vector Spaces

We motivated this whole discussion on the relatively abstract topic of vector
spaces on various conditions underlying matrix operations, and in particular
Gaussian elimination. Now we will return to consideration of matrices.

We now introduce the following matrix-related vector spaces.

Definition 3.1. Consider an m× n matrix A. We define:

1. the row space of A (denoted row(A)) to be the span of the row vectors
of A;

2. the column space of A (denoted col(A)) to be the span of the column
vectors of A; and

3. the null space of A (denoted null(A)) to be the set of vectors ~v such
that A~v = ~0.

10



For example, consider the matrix

A =

[
2 −3 1
−1 1 0

]
.

We have very easily that row(A) = span{(2,−3, 1), (−1, 1, 0)} and that
col(A) = span{(2,−1), (−3, 1), (1, 0)}. The only space requiring any work
is determining null(A). To do this we need to solve A~v = ~0 which gives the
linear system [

2 −3 1 0
−1 1 0 0

]
−→

[
1 0 −1 0
0 1 −1 0

]
.

Set v3 = t, we have v1 = t, v2 = t. It follows that (v1, v2, v3) = t(1, 1, 1) =
span{(1, 1, 1)}. It follows that null(A) = span{(1, 1, 1)}.

There are a few notes worth making:

• These definitions apply to matrices of arbitrary (finite) dimension. We
do not need to restrict our attention to square matrices!

• We will need to be care about the dimensions of the vectors in these
spaces. For an m× n matrix, the vectors in the column space will be
m dimensional, while the vectors in the row space and null space will
be n dimensional.

• The null space of matrix also goes by the name of the kernel of a
matrix. For the purposes of this course, I will always refer to the null
space; however, be aware that other courses which deal with similar
subject matter may refer to the space by this different name.

We know that defining a vector space by the span of an arbitrary set of
vectors is not, in general, the best way to describe the space. In particular,
we may have linear dependence within the set of vectors, so that the space
can actually be generated by a smaller set of vectors. So we might wonder
what the best way to represent these spaces is. In other words, can we easily
find a basis for these spaces?

The answer comes to us from consideration of the row-reduced echelon
form of the matrix.

Theorem 3.1. Consider the row-reduced echelon form of an m× n matrix
A. Then:
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1. A basis for row(A) is given by the rows of the row-reduced echelon
matrix which have leading ones;

2. A basis for col(A) is given by the columns of the original matrix which
have leadings ones in the row-reduced echelon form; and

3. A basis for null(A) is given by the span of the vectors found by placing
the solution A~v = ~0 in vector form.

For the example matrix

A =

[
2 −3 1
−1 1 0

]
we had the row-reduced echelon matrix[

1 0 −1
0 1 −1

]
.

It follows that the set {(1, 0,−1), (0, 1,−1)} is a basis of the row(A), the set
{(2,−1), (−3, 1)} is a basis of col(A) (since the third column is not assigned
a leading one in the row reduction), and {(1, 1, 1)} is a basis of null(A) (as
before).

We have the following notes to make.

• At this point, we should be growing slightly tired of hearing about the
row-reduced echelon matrix and all the things we can accomplish with
it. (Is there any process in matrix algebra which does not depend on it
in some way? Probably not many.) At any rate, we should be realized
that there is not much more arithmetic to do. The only new thing we
are doing here is interpreting the end result of the elimination process
in a novel way.

• It is important to recognize that the basis for the row space is given
by the actual rows in the row-reduced matrix corresponding to leading
ones. The basis for the column space is given by the columns in the
original matrix which correspond to the leading ones. It is important
to recognize this!

So far we have accomplished two things: defined the spaces, and given
a minimal description of them (by determining the bases). We now want
to say something about how these three spaces relate to one another. To
accomplish this, firstly we will need to introduce the following definitions.
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Definition 3.2. Consider an m × n matrix A with row space row(A) and
null space null(A). Then the rank of A is given by rank(A) = dim(row(A))
and the nullity of A is given by nullity(A) = dim(null(A)).

For our previous example, we have two elements in the basis for row(A)
and a single element in the basis for null(A) so that rank(A) = 2 and
nullity(A) = 1.

We have the following results regarding how the row, column, and null
spaces relate.

Theorem 3.2. Consider an m×n matrix A with row space row(A), column
space col(A), and null space null(A). Then we have

1. rank(A) = dim(row(A)) = dim(col(A));

2. rank(A) + nullity(A) = n; and

3. If Brow is a basis of row(A) and Bnull is a basis of null(A) then B =
{Brow, Bnull} is a basis of Rn.

We can easily verify this for the previous example. We have that dim(row(A))
= dim(col(A)) = 2 so that the first point is satisfied, rank(A)+nullity(A) =
2 + 1 = 3 = n so that the second point is satisfied, and it can be easily
checked that the set

B = {(1, 0,−1), (0, 1,−1), (1, 1, 1)}

is a basis of R3 since

det

 1 0 1
0 1 1
−1 −1 1


= (1)

∣∣∣∣ 1 1
−1 1

∣∣∣∣+ (1)

∣∣∣∣ 0 1
−1 −1

∣∣∣∣
= (2) + (1) = 3 6= 0.

Example: Determine a basis for the row space, column space, and null
space of

A =


1 −1 0 1 0
1 −1 1 1 −2
1 −1 3 4 −3
1 −1 −2 −2 1

 .
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Determine the rank and nullity of A and verify that the rank-nullity theorem
is satisfied.

Solution: The matrix A can be row reduced to give

A =


1 −1 0 1 0
1 −1 1 1 −2
1 −1 3 4 −3
1 −1 −2 −2 1

 −→


1 −1 0 0 −1
0 0 1 0 −2
0 0 0 1 1
0 0 0 0 0

 .

A basis for the row space is given by the rows of the row reduced matrix
with leading ones, so that we have

row(A) = span {(1,−1, 0, 0,−1), (0, 0, 1, 0,−2), (0, 0, 0, 1, 1)} .

A basis for the column space is given by the columns of the original matrix
corresponding to leading ones in the row reduced echelon form, so that we
have

col(A) = span {(1, 1, 1, 1), (0, 1, 3,−2), (1, 1, 4,−2)} .

A basis for the nullspace can be given by the vector form of the solution of
the homogeneous system

A~v = ~0

so that we have

null(A) = span {(1, 1, 0, 0, 0), (1, 0, 2,−1, 1)} .

We have that rank(A) = dim(row(A))= 3 and nullity(A) = dim(null(A))=
2. It follows that

rank(A) + nullity(A) = (3) + (2) = 5

which corresponds to the number of columns of A. This is exactly what we
expect from the rank-nullity theorem.

3.1 Change of Basis (Time Permitting)

If we accept that vector spaces in general have multiple bases and that, in
general, we do not have a preference for one basis over another, we might
wonder how easy it is switch from one basis to another. That is to say,
suppose that a point (or vector) in our vector space V has coordinates
c1, . . . , cm with respect to a basis B. Can we determine (easily) what the
point’s coordinates c∗1, . . . , c

∗
2 are with respect to another basis B∗?
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Consider the following two examples.

Example 1: Suppose we want to transform points from the basis B =
{(2, 0,−1), (1, 1, 0), (0, 1, 1)} to the standard basis B∗ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Suppose we know the coordinates of a point c1, c2, and c3 with respect to
B. Determine the coordinates of the point with respect to B∗.

Solution: Consider this reasoning: since both B and B∗ span R3, we
can write either basis in terms of the other. Determining this relationship
should be our first step! From then we simply need to determine how the
coefficients of an individual point change when one basis is substituted for
another.

In order to determine how the coefficients change, we consider the task
of writing an arbitrary element ~bi ∈ B as a linear combination of elements

in B∗ =
{
~b∗1, . . . ,

~b∗m

}
. We have the general form

~bi = ci1~b
∗
1 + ci2~b

∗
2 + · · ·+ cim~b

∗
m

for i = 1, . . .m. This can be written in condensed matrix form as

B∗C = B

where

B∗ =
[
~b∗1

~b∗2 · · · ~b∗m

]
, C =

 c11 · · · cm1
...

. . .
...

c1m · · · cmm

 ,

and B =
[
~b1 ~b2 · · · ~bm

]
.

For our specific example, we have

B∗

 1 0 0
0 1 0
0 0 1

 , C =

 c11 c21 c31
c12 c22 c32
c13 c23 c33

 , and B =

 2 1 0
0 1 1
−1 0 1

 .

Solving for c11, c12, and c13, for instance, tell us how (2, 0,−1) is indexed
according to the standard basis. Of course, it is obvious that we have

(2, 0,−1) = (2)(1, 0, 0) + (0)(0, 1, 0) + (−1)(0, 0, 1)
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so we must have c11 = 2, c12 = 0, and c13 = −1. In fact, the entire matrix
equation is equivalent to the row form 1 0 0 2 1 0

0 1 0 0 1 1
0 0 1 −1 0 1


which is already solved! (This is the same type of system we have for solving
inverses. In general, we will have to solve this, but because we chose the
standard basis this was already done for us.) We have that

C =

 2 1 0
0 1 1
−1 0 1

 .

We now want to describe a particular point with respect to the change
of basis implied by C. We recall that an individual point ~v can be written
with respect to the old basis as

~v = B~c

where ~c = (c1, c2, c3) is the (unique) set of coordinates with respect to the
basis B. In order to determine the set of coordinates with respect to the
standard basis B∗, we compute

~v = B~c = B∗C~c = B∗~c∗

where ~c∗ = C~c. In other words, we can take the old coordinates with
respect to B, multiply them through the matrix C we just derived, and we
will obtain the new coordinates in the standard basis B∗. We have c∗1

c∗2
c∗3

 =

 2 1 0
0 1 1
−1 0 1

 c1
c2
c3

 =

 2c1 + c2
c2 + c3
−c1 + c3


so that a point with coordinates (c1, c2, c3) with respect to the old basis
has coordinates (c∗1, c

∗
2, c

∗
3) = (2c1 + c2, c2 + c3,−c1 + c3) with respect to the

standard basis.
To take an example, let’s consider the point with coordinates (c1, c2, c3) =

(1, 0,−1) with respect to the basis B. This gives

(1)(2, 0,−1) + (0)(1, 1, 0) + (−1)(0, 1, 1) = (2,−1,−2).
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Our formula gives us the coordinates (c∗1, c
∗
2, c

∗
3) = (2c1 + c2, c2 + c3,−c1 +

c3) = (2,−1,−2). This corresponds to the point

(2)(1, 0, 0) + (−1)(0, 1, 0) + (−2)(0, 0, 1) = (2,−1, 2)

as expected.

Example 2: Let’s consider going the other direction. That is to say,
suppose we know the coordinates of a point/vector ~v (c1, c2, c3) with respect
to the standard basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and want to determine
the coordinates with respect to the basis B∗ = {(2, 0,−1), (1, 1, 0), (0, 1, 1)}.

Solution: We have the same set up. We need to rewrite the vectors in
the basis B in terms of the basis B∗. This gives the matrix equation

B∗C = B

as before. In this case, however, we have the coefficient matrix to solve 2 1 0 1 0 0
0 1 1 0 1 0
−1 0 1 0 0 1

 .

In order to solve for the entries of C (i.e. to find how the first basis depends
on the second) we row reduce this matrix to get 1 0 0 1 −1 1

0 1 0 −1 2 −2
0 0 1 1 −1 2

 .

It follows that the matrix we need is

C = (B∗)−1 =

 1 −1 1
−1 2 −2
1 −1 2

 .

This is great! We now know that any point/vector ~v with coordinates
~c = (c1, c2, c3) with respect to B can be written

~v = B~c = B∗C~c = B∗~c∗

where ~c∗ = C~c. We have (c∗1, c
∗
2, c

∗
3) = (c1− c2 + c3,−c1 + 2c2− 2c3, c1− c2 +

2c3). For instance, if we are interested in the point ~v = (1, 0,−1) which has
coordinates (c1, c2, c3) = (1, 0,−1) with respect to the standard basis B, we
have that the coordinates are (c∗1, c

∗
2, c

∗
3) = (0, 1,−1) with respect to B∗. In

fact, we can easily check that

(0)(2, 0,−1) + (1)(1, 1, 0) + (−1)(0, 1, 1) = (1, 0,−1).
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