
MATH 320, WEEK 11:
Eigenvalues and Eigenvectors

1 Eigenvalues and Eigenvectors

We have learned about several vector spaces which naturally arise from
matrix operations. In particular, we have learned about the row space, the
column space, and the null space.

All of these spaces have a wide variety of uses within linear algebra and
related applications (like differential equations!) but there is one very impor-
tant set of vectors (and related vector space) which we have not investigated
yet: the eigenvectors and eigenspace. In a sense, we have saved the best for
last—there is hardly any application of linear algebra which is not influenced
by these objects.

To motivate what it is we are looking for, let’s first formally introduce
the concept of a linear transformation from Rn to Rn.

Definition 1.1. Consider an n×n matrix A. The linear transformation
associated with A is the mapping which takes vectors ~v ∈ Rn to vectors
~w ∈ Rn according to the relationship

~w = A~v.

In other words, a linear transformation takes vectors (or points) in some
dimension and associates them to another point in the same space. For
instance, if we have a two-dimensional space (i.e. R2), the linear transfor-
mation ~w = A~v takes points in the plane to other points in the plane. We
saw this on Assignment #6 with the rotation and projection matrices.

In general, linear transformations take vectors to new vectors—that is to
say, they move things. We can easily check that, for example, ~v = (1, 0) is
mapped to ~w = A~v = (−1,−3) and ~v = (0, 1) is mapped to ~w = A~v = (2, 4).
There does not appear to be any significant pattern to how things move.
But consider computing ~w = A~v with ~v = (1, 1) for the matrix

A =

[
−1 2
−3 4

]
.
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We can easily compute that[
w1

w2

]
=

[
−1 2
−3 4

] [
1
1

]
=

[
1
1

]
.

In other words, the transformation did not change anything! This is cer-
tainly not a general trend. So why did ~v = (1, 1) stay put?

To more fully resolve the question we should be asking, let’s consider
another vector. This time, we will use ~v = (2, 3). For this vector, we have[

w1

w2

]
=

[
−1 2
−3 4

] [
2
3

]
=

[
4
6

]
.

This is not exactly like the previous vector—we have not obtained the exact
same vector we started with—but we probably recognize fairly quick that
we have ~w = (4, 6) = 2(2, 3) = 2~v. In other words, the transformation has
scaled this vector by a factor of two, but the new vector still lies on the same
line.

So, embedded in the linear transformation ~w = A~v are a pair of invari-
ant directions. That is to say, there are a pair of directions where, if we
start along a line extending in a particular directly, the transformation may
stretch us out (or compress us), but we are never allowed to move off of the
line. Let’s formalize what these invariant quantities are.

Definition 1.2. Suppose an n×n matrix A. Then we will say that λ is an
eigenvalue of A with corresponding eigenvector ~v if

A~v = λ~v. (1)

This is exactly what we need! The eigenvector is the direction where the
transformation ~w = A~v is invariant, and the eigenvalues λ represents the
scaling in the invariant direction. With this new terminology added to our
linear algebra lexicon, the next questions are obvious:

1. Do n× n matrices always have eigenvalues and eigenvectors?

2. If so, how can we find them?

To answer these questions, let’s consider the equation (1) in more depth.
What do we need to have happen in order for A~v = λ~v? For starters, we
can rewrite the equation in the following way:

A~v − λ~v = ~0 =⇒ A~v − λI~v = ~0 =⇒ (A− λI)~v = ~0.
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This may not look like much, but it is actually a significant improvement.
This is a null space problem, and we know how to perform null space prob-
lems.

We are still not done, however. At this point both λ and ~v have not
been determined, and we know they must be carefully selected since most
vectors do not satisfy the invariance principle we are looking for. What we
are going to do is notice the following:

1. In order for a matrix to have a non-trivial null space, we must have
nullity(A) > 0.

2. By the Rank-Nullity Theorem for an n× n matrix, we have
rank(A)+nullity(A) = n. It follows that rank(A) < n.

3. If a square matrix does not have full rank, it follows that it is not
invertible, i.e. det(A) = 0.

In other words, the only possible way to satisfy (A − λI)~v = ~0 is to have
det(A−λI) = 0. This is great news! We know how to compute determinants
for arbitrary square matrices. If we can solve the resulting equation for λ
we will have obtained the eigenvalues of the matrix!

This suggests the following algorithm for determining eigenvalues and
eigenvectors:

1. Compute the det(A− λI). This gives an equation in λ which is called
the characteristic equation.

2. Solve det(A − λI) = 0 for λ. This gives the eigenvalues. (In general,
there are n of them, labelled λ1, λ2, . . . , λn.)

3. Determine the null space of (A− λI) for all values of λ found in part
2. This gives the eigenvectors (~v1, ~v2, . . . , ~vn).

4. Check the equation A~vi = λi~vi for all the pairs found! This is the easy
part, but it is a good way to validate your work.

Let’s reconsider the previous example. We have

A =

[
−1 2
−3 4

]
.

This gives

A− λI =

[
−1 2
−3 4

]
− λ

[
1 0
0 1

]
=

[
−1− λ 2
−3 4− λ

]
.
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We can quickly compute

det(A− λI) = (−1− λ)(4− λ) + 6 = λ2 − 3λ+ 2 = (λ− 2)(λ− 1) = 0.

We can see that the eigenvalues are λ1 = 1 and λ2 = 2, as expected. These
are the scalings of the invariant vectors. We now want to compute the
eigenvectors.

To λ1 = 1, we have the equation

(A− λ1I) = (A− I) =

[
−1 2
−3 4

]
−
[

1 0
0 1

]
=

[
−2 2
−3 3

]
.

We want the nullspace, so we compute[
−2 2 0
−3 3 0

]
−→

[
1 −1 0
0 0 0

]
.

The second component has no leading one, so we set v2 = t and solve v1 = t,
t ∈ R. Taking t = 1 it follows that we have ~v1 = (1, 1) (we can pick any
vector in the span of the solution).

To λ1 = 2, we have the equation

(A− λ1I) = (A− 2I) =

[
−1 2
−3 4

]
− 2

[
1 0
0 1

]
=

[
−3 2
−3 2

]
.

We want the nullspace, so we compute[
−3 2 0
−3 2 0

]
−→

[
1 −2/3 0
0 0 0

]
.

The second component has no leading one, so we set v2 = t and solve
v1 = (2/3)t, t ∈ R. Taking t = 3 it follows that we have ~v1 = (2, 3). That’s
it! We that have the eigenvalue/eigenvector pairs for this matrix are

λ1 = 1, ~v1 = (1, 1), and λ2 = 2, ~v2 = (2, 3).

2 The Characteristic Equation

To consider what else can happen when computing eigenvalues and eigen-
vectors, let’s consider a general 2× 2 matrix

A =

[
a b
c d

]
.
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We can quickly see that det(A− λI) = 0 gives∣∣∣∣ a− λ b
c d− λ

∣∣∣∣ = (a− λ)(d− λ)− bc

= λ2 − (a+ d)λ+ (ad− bc) = 0.

Noticing that a + d is the trace of A and ad + bc is the determinant of A,
we have the quadratic equation

λ2 − tr(A)λ+ det(A) = 0

=⇒ λ =
tr(A)±

√
tr(A)2 − 4det(A)

2
.

There are three essentially different cases which can occur with this
equation:

1. Two distinct eigenvalues: If tr(A)2 > 4det(A) then there will be
two distinct eigenvalues.

2. One repeated eigenvalues: If tr(A)2 = 4det(A) then there will be
one repeated eigenvalue.

3. Complex conjugate pair eigenvalues: If tr(A)2 < 4det(A) then
there will be a complex conjugate pair of eigenvalues.

There are a few notes worth making about this:

• These results generalize to arbitrary dimensions! For a general n× n
matrix A, the characteristic equation is always an nth order polynomial
in λ. It is a general property of polynomials (often called the Funda-
mental Theorem of Algebra) that their roots are either real numbers
(possibly repeated) or complex conjugate pairs (possibly repeated).
That is to say, there are no new cases which pop out as we bump up
to considering 3× 3 matrices, or 4× 4, etc.

• Writing the characteristic equation for a 2× 2 matrix in terms of the
trace and determinant is not required, but it is useful. If we compute
the trace and determinant first, we now only have two things to keep
track of in subsequent computations rather than the original four (a,
b, c, and d).
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• Since eigenvectors correspond to invariant spaces (i.e. they are a null
space, and hence a vector space), we may take any vector in the space
to describe the space. That means we can take any value of the ar-
bitrary parameter t ∈ R that we like. We will usually choose it to be
the smallest value for which allows all of the terms in ~v are integers.

• How we handle the eigenvectors in each of these three cases turns out
to be a little bit different. This will be handled on a case-by-case basis.
If the eigenvalues are complex, we will have complex eigenvectors. If
eigenvalues are repeated, it is possible (although not always the case)
that we will not end up with a full set of n eigenvectors.

• In general practice, eigenvalues and eigenvectors are messy ! The ex-
amples in this class will be carefully manufactured to work out well.

2.1 Complex Conjugate Eigenvalues

Let’s consider another example. Let’s try to find the eigenvalues and eigen-
vectors of

A =

[
3 2
−1 1

]
.

We perform the analysis exactly as before. We have∣∣∣∣ 3− λ 2
−1 1− λ

∣∣∣∣ = (3− λ)(1− λ) + 2

= λ2 − 4λ+ 5 = 0.

This has no obvious roots, so we plug this into the quadratic formula to get

λ =
4±
√

16− 20

2
= 2±

√
−4

2
= 2±

√
−1 = 2± i.

We have not see the imaginary number i =
√
−1 yet in this course, but

we will not be able to escape it now! It is a somewhat surprising fact of the
real world that imaginary numbers pop up frequently and tell us meaningful
information about the real quantities they are modeling. We will see this
when we return to consideration of differential equations. Many processes
which involve oscillations give rise to complex values.

For the purposes of this course, we will need to know only a few things
about the imaginary number i:
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1. Any complex number z ∈ C can be written as the sum of a real part
Re(z) and an imaginary part Im(z) in the following form:

z = Re(z) + Im(z) · i.

2. In order to add two complex numbers z, w ∈ C we just add the real
and imaginary parts separately:

z + w = (Re(z) +Re(w)) + (Im(z) + Im(w)) · i.

3. When multiplying complex numbers, we will need to remember that
i · i =

√
−1 ·
√
−1 = −1. Notice that this is a real number! This means

that when we multiply complex numbers, we will have recollect the
real and imaginary part after resolving all of the multiplications. The
imaginary parts will not necessarily stay imaginary. For example, if
z = 1 + i and w = 2− i, we have

z · w = (1 + i)(2− i) = 2 + i− i · i = 2 + i− (−1) = 3 + i.

4. Later on in the course, we will need the famous Euler’s formula

eix = cos(x) + i sin(x).

If you have not see this formula before, you are probably doing a
double-take. How can an exponential, two basic trigonometric func-
tions, and the imaginary number i be related? Nevertheless, this iden-
tity can be (relatively) easily verified by taking the Taylor series ex-
pansion of the left-hand and right-hand sides. We will not need to
understand this formula, but we will need to remember it.

Complex analysis is a very rich area of mathematical analysis—and very
useful in many areas of applied mathematics, including dynamical systems,
cosmological modeling, and fluid mechanics—but these operations are the
extent to which we will touch on it.

Now let’s find the eigenvectors. We use the same equation as before. We
want to find the null space of A− λ1I where λ1 = 2 + i (we will ignore the
other conjugate λ2 = 2− i for the time being). We have

A− λ1I =

[
3− (2 + i) 2
−1 1− (2 + i)

]
=

[
1− i 2
−1 −1− i

]
.
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To find the nullspace, we compute[
1− i 2 0
−1 −1− i 0

]
(1+i)R1

=⇒
[

(1− i)(1 + i) 2(1 + i) 0
−1 −1− i 0

]
=⇒

[
2 2 + 2i 0
−1 −1− i 0

]
=⇒

[
1 1 + i 0
0 0 0

]
.

Just as before, we set the variables not corresponding to leading ones to an
arbitrary parameter (i.e. v2 = t) so that we get v1 = −(1 + i)t. In vector
form, and taking t = 1, we have

~v1 =

[
−(1 + i)

1

]
=

([
−1
1

]
+

[
−1
0

]
· i
)
.

It should not unexpected that a complex eigenvalue with yield complex
eigenvectors. For now, we will we write the solution as a real and an imag-
inary part without any further consideration. We will see when we revisit
differential equations that the real and imaginary parts of a complex eigen-
vector tell us very powerful things about systems which have strictly real
variables.

There are a number of notes worth making about this process:

• This is much harder than finding eigenvectors when the eigenvalues
were real and distinct! Even in the 2 × 2 case, this was quite a bit
of work. But there is good news—the steps worked exactly as before.
That is to say, we can find complex eigenvalues and eigenvectors in
exactly the same way as we could for real eigenvalues and eigenvectors,
at least in principle. It is just a matter of execution, which takes
practice.

• We have not encountered row reduction using complex numbers before.
The good news is that the row operations all still hold (i.e. we can
multiply by complex numbers, etc.). The bad news is that it is often
harder to see what we are supposed to do to eliminate variables (espe-
cially if we do not know how to do division with complex numbers).
A few tricks may help:
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1. We know that a complex eigenvalue λ ∈ C will produce a matrix
(A−λI) with rank < n so that there will be (at least one) row of
zeroes. So, for a 2× 2 matrix, there must be a complex number
we can multiply by which will show that the two rows are in fact
multiples of one another. Just knowing this tells us a great deal
about how we must row reduce.

2. A complex number a+ bi can always be made into a real number
by multiplying by the complex conjugate a− bi since (a+ bi)(a−
bi) = a2+b2 ∈ R. If we know two rows must cancel (as they must
in the 2 × 2 case), but the rows have real and complex numbers
in places which do not match, a good bet is to multiply by the
conjugate of the complex term.

• We might wonder what happened with the conjugate eigenvalue λ2 =
2 − i. The answer is that we ignored it, but not without good cause.
It turns out that this eigenvalues has the conjugate eigenvector of the
one we computed, and that this a general property. That is to say,
without even checking, we have know that

~v2 =

([
−1
1

]
−
[
−1
0

]
· i
)
.

Example: Compute the eigenvalues and eigenvectors of

A =

[
1 −1
1 2

]
.

Solution: We need to compute

det(A− λI) =

∣∣∣∣ 1− λ −1
1 2− λ

∣∣∣∣
= (1− λ)(2− λ) + 1

= λ2 − 3λ+ 3 = 0

=⇒ λ =
3±
√

9− 12

2
=

3

2
±
√

3

2
i.

For complex conjugate eigenvalues, we may pick either eigenvalue to
determine the eigenvector, knowing that the other eigenvector will be the
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conjugate of the one found. For λ = 3/2 + (
√

3/2)i we have 1−
(
3
2 +

√
3
2 i
)

−1 0

1 2−
(
3
2 +

√
3
2 i
)

0


−→

[
−1

2 −
√
3
2 i −1 0

1 1
2 −

√
3
2 i 0

]

−→

[ (
−1

2 −
√
3
2 i
)(
−1

2 +
√
3
2 i
)

1
2 −

√
3
2 i 0

1 1
2 −

√
3
2 i 0

]

−→

[
1 1

2 −
√
3
2 i 0

1 1
2 −

√
3
2 i 0

]

−→

[
1 1

2 −
√
3
2 i 0

0 0 0

]

Setting v2 = t, solving in vector form, and then taking t = 2, it follows that
we have the complex eigenvector

~v =

[
−1 +

√
3i

2

]
=

([
−1
2

]
+

[ √
3

0

]
· i
)
.

3 Repeated Eigenvalues

To see what else can happened, let’s consider finding the eigenvalues and
eigenvectors of

A =

[
−4 −1
4 0

]
.

We have

det(A− λI) =

∣∣∣∣ −4− λ −1
4 −λ

∣∣∣∣
= (−4− λ)(−λ) + 4

= λ2 + 4λ+ 4 = (λ+ 2)2 = 0.

We do not even need to use the quadratic formula to determine that λ =
−2. We notice that there is something distinctively different about this
example since we have only found one eigenvalue instead of the typical two.
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Nevertheless, we can proceed as before and compute[
−4− (−2) −1 0

4 −(−2) 0

]
−→

[
−2 −1 0
4 2 0

]
−→

[
1 1

2 0
0 0 0

]
.

Setting v2 = t = 2 (to clear the denominator) gives us the eigenvector
~v = (−1, 2).

Something is very different about this example. We have obtained an
eigenvector, but only one, and since there are no further eigenvalues to use,
this appears to be the end of the discussion. For the applications we will
need to use later in this course, however, we will need to have a full set
of linearly independent eigenvectors—that is to say, we will need as many
vectors as there are dimensions to the system. Otherwise we will not be able
to find solutions to linear systems of differential equations. But if we are
not looking for eigenvectors as we have defined them, what are we looking
for?

The answer is contained in the following definition.

Definition 3.1. A vector ~vm is called a generalized eigenvector of rank
m if it satisfies

(A− λI)m~vm = ~0 but (A− λI)m−1~vm 6= ~0.

It is not immediately obvious how these new vectors help us (and the
rigorous justification is beyond the scope of the course), but the following
facts are known about generalized eigenvectors:

1. Every defective eigenvalue λ (i.e. an eigenvalue which does not gener-
ate as many eigenvectors as its multiplicity in the characteristic equa-
tion) has exactly as many generalized eigenvectors as the multiplicity
of the λ in the characteristic polynomial (recognizing, of course, that
generalized eigenvectors of rank 1 are the regular eigenvectors).

2. These generalized eigenvectors are linearly independent.

3. The generalized eigenvectors form chains of the form

(A− λI)~vk = ~vk−1, for k = 1, . . .
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In fact, this is easy to see! If we have, for instance, (A − λI)~v2 = ~v1
where ~v1 is a regular eigenvector (i.e. a vector which satisfies (A −
λI)~v1 = ~0), then we have

(A− λI)(A− λI)~v2 = (A− λI)~v1

=⇒ (A− λI)2~v2 = ~0 but (A− λI)~v2 6= ~0.

This can be generalized to show that

(A− λI)~vk = ~vk−1, for k = 1, . . .

implies
(A− λI)k~vk = ~0 but (A− λI)k−1~vk 6= ~0.

Returning to our example, we want to find a generalized eigenvector ~v2
by using the equation

(A− λI)~v2 = ~v1

where ~v1 = (−1, 2). We have [
−2 −1 −1
4 2 2

]
−→

[
1 1

2
1
2

0 0 0

]
.

In vector form, the solution to this system is[
v1
v2

]
=

[
1
2
0

]
+ t

[
−1

2
1

]
.

As with regular eigenvectors, we may pick any value of t ∈ R that we wish,
but we may want to take a value which eliminates the fractions. In this
case, taking t = 1 gives ~v2 = (0, 1).

For the time being, we will take generalized eigenvectors to be a mys-
terious quantity, but we may at least be satisfied that this vector, at the
very least, is linearly independent of ~v1. Consequently, the set {~v1, ~v2} is
a basis of R2. We will see later in the course that determining generalized
eigenvectors is necessary for determining the behavior and/or solutions of
linear systems of first-order differential equations.
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4 Example

Determine the eigenvalues and eigenvectors of

A =

 0 −2 3
1 3 −3
0 0 1

 .
Solution: We need to set det(A− λI) = 0. We have

det(A− λI) =

∣∣∣∣∣∣
−λ −2 3
1 3− λ −3
0 0 1− λ

∣∣∣∣∣∣
= (1− λ) [−λ(3− λ) + 2]

= (1− λ)
[
λ2 − 3λ+ 2

]
= −(λ− 1)2(λ− 2) = 0.

It follows that λ1 = 1 (multiplicity 2) and λ2 = 2 are the eigenvalues.
To compute the eigenvector(s) associated with λ1 = λ2 = 1, we find the

null space of (A− λ1I) = (A− (1)I). We have −1 −2 3 0
1 2 −3 0
0 0 0 0

 −→

 1 2 −3 0
0 0 0 0
0 0 0 0

 .
It follows that we have v2 = s, v3 = t and therefore v1 = −2s+ 3t. In vector
form we have  v1

v2
v3

 = s

 −2
1
0

+ t

 3
0
1

 .
It follows that the eigenvectors associated with λ1 are ~v1 = (−2, 1, 0) and
~v2 = (3, 0, 1).

To compute the eigenvector associated with λ3 = 2, we find the null
space of (A− λ3I) = (A− 2I). We have −2 −2 3 0

1 1 −3 0
0 0 −1 0

 −→

 1 1 −3 0
0 0 −3 0
0 0 −1 0



−→

 1 1 0 0
0 0 1 0
0 0 0 0

 .
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We have v2 = t so v1 = −t and also v3 = 0. In vector form, we have v1
v2
v3

 = t

 −1
1
0

 .
It follows that the eigenvector associated with λ3 = 2 is ~v3 = (−1, 1, 0).

We notice that, even though we have a repeated eigenvalue, we did not
need to find any generalized eigenvectors! In fact there are two regular
eigenvectors associated with the single eigenvalue λ = 1. We need to re-
member this. We only need to find generalized eigenvectors if the number of
regular eigenvectors is less than the multiplicity of the eigenvalue λ in the
characteristic equation.
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