MATH 320, WEEK 12:
Higher-Order Differential Equations

1 Higher-Order Differential Equations

We now return to our investigation of differential equations.
In the first differential equation section of this course, we only dealt with
first-order differential equations. That is to say, we only dealt with equations

of the form
dy

We saw a few examples where equations of this form arise: population
growth models, stirred-tank models, velocity/acceleration problems, etc.
But it should come as no surprise that the mathematical models of many
physical phenomena cannot be represented in this way.

In order to expand the scope of differential equations we can handle,
we will need to both understand the physical motivation behind higher-
order derivatives and develop the mathematical theory/intuitive required
to handle these cases. The key realization, which will not be fully justified
until near the end of the course, is that increasing the order of the differential
equations, and increasing the number of variables we are considering are in
principle the same problem. That is to say, for all intents and purposes,
higher-order differential equations are the same as systems of differential
equations. In both settings, we will need to use techniques from linear
algebra in order to make progress.

2 Motivation: Damped Spring / Pendulum

We do not need search very hard to find an example of how a second-order
differential equation may arise in practice. Consider the forces acting on a
pendulum (or on an elongated spring). Suppose the rest position is x = 0,
anything to the right of that is > 0, and anything to the left is x < 0. If we
move the pendulum to the right (z > 0), gravity acts against the pendulum
to force it left (F' < 0); conversely, if we move the pendulum to the left
(x > 0), gravity acts against the pendulum to force it right (F' > 0). (See
Figure 1.)



If we consider a frictional force in addition to this “restoring force”, we
have a similar interpretation except in terms of the wvelocity. If we imagine
v = 0 as no velocity, v > 0 as movement to the right, and v < 0 as movement
to the left, we have that friction always acts against the pendulum (i.e.
F<0ifv>0and F>0if v <0).
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Figure 1: Restoring forces acting on a simple pendulum or a mass-spring.
The force acts to restore the mass to its resting or neutral position.

Now let’s attempt to capture these forces more precisely. We will assume
the following:

1. Restoring force proportional to position - That is to say, we
will assume that Frestoring = —ka for some k > 0. This satisfies our
previous intuition (F' < 0 for x > 0 and F > 0 for z < 0) although it
is an approximation which does not hold for high-amplitude oscillating
pendulums (i.e. pendulums that swing very far from the rest position).

2. Frictional force proportional to velocity - That is to say, we will
assume that Frriction = —cv = —c% for some ¢ > 0. This again
satisfies our previous intuition. It also makes sense that the more we
increase our velocity, the more “drag” we will experience.

The question then becomes how to incorporate this into a differential equa-
tion model. The answer comes from Newton’s second law F' = ma (i.e. force



equals mass times acceleration). We have

d*x
ma —=m-——-
dt?
dx
F = Frestoring + Friction = —kx — CE-

Putting this all together gives us the combined differential equation

2
m% + c% + kx = 0.

(Notice that we could derive the same differential equations, with a slightly
different interpretation for the constants involved, by considering a mass-
spring example obeying Hooke’s law.)

This differential equation may not look like much, but it will be our
canonical examples (plus or minus a few modifications) for the remainder of
the course. There are a few important things to notice about it:

e It is a second-order differential equation. It should not take much
convincing that the techniques we learned in the early portion of this
course (e.g. separating variables, finding integrating factors) are not
going to work for finding a solution of such equations (or higher-order
equations).

o It is linear, autonomous and homogeneous. In some senses, this is the
best possible case, and we will always been able to find solutions. A
little later on, we will deal with differential equations like this which
are non-homogeneous, i.e. equations like

d’z dx

Recognize, however, that we may consider non-autonomous equations
as well, e.g. differential equations

d3y d?y dy

3 2
'— —r— +2x— — 2y =0.

dz3 dz? + de Y
Even though we will not cover the solution method for such equations,
we can still verify that something is a solution. For instance, we can
easily compute that y(z) = zIn(z) is a solution since
2y 1 dy 1

In(z) + 1, = -, =

dy _ y &y 1
dz?  x’ dxd a2

= [L" =
Y dx



so that

z® ( 1) — (;) + 2z(In(z) + 1) — 2(z1n(z)) = 0.

T2

e There is a further subtlety regarding initial conditions. Consider look-
ing at a snapshot of a pendulum extended to the right and asking the
question of what happened to the pendulum in the next moments after
the snapshot was taken. We should quickly realize that there are three
cases:

1. If the snapshot was taken while the pendulum was at rest, the
pendulum will slowly pick up speed from rest and move toward
its resting position.

2. If the snapshot was taken while the pendulum was swinging to
the right, the pendulum will continue to the right, lose speed, and
eventually reverse (or swing over the top).

3. If the snapshot was taken while the pendulum was returning from
the right, the pendulum is already moving and will quickly return
to the rest position (and probably far exceed it).

In any case, we see that it is very important to consider not only the
position of the pendulum at the time the snapshot was taken, but also
the velocity. In general, for n'* order differential equations we need n
distinct initial conditions.

Over the next few weeks, we will see how to handle such equations, and
how to interpret the results in terms of the relevant physical models as well.

3 Higher-Order Linear Differential Equations

Consider the general homogeneous second-order differential equation with
constant coefficients given by
d’y . dy
— +b— =0. 1
as s + e +c (1)
How might we go about finding a solution for such an equation? We
cannot separate the variables, or find an integrating factor, or find an obvious
substitution which will reduce the differential equation to first-order. So
what is there left to do?



The answer is that we are going to guess. This may seem like an unsat-
isfactory answer, but at the very least we will take an educated guess. We
know one function which behaves particularly well under the operation of
differentiation: the exponential function. So let’s guess that the solution of
(1) has the form

y(w) = e

for some r. If this does not work out, we have not lost a great deal of time.
It is easy to take derivatives of the exponential function!

Example: Find a solution to

Py _dy
—= — 5= +4y =0. 2
dx? dx T (2)

Solution: We will guess that the solution has the form y(z) = ™. This
gives
rT @ Y dzy 2 rx

re —2 =r
" odx T da?

so that

dzy dy 2 re T T T (.2 T
@—5%4-4@/:7"6 —bre" +4e" =" (r* —br+4) =" (r—1)(r—4).

The only way for this to equal zero is to have r = 1 or r = 4. It follows that

y1(z) =€, and ys(z) = et

are solutions of the differential equation.

This example raises a very interesting follow-up question: What does it
mean for a differential equation to have two solutions? Is there only one
answer? Or are there two?

The answer is that there is one answer, in a sense, which comes from
the two answers we have found. In fact, we can easily check that any linear
combination of y1(x) and yo(x) is a solution of (2)! That is to say, the
solution is

y(@) = Cuyn (z) + Capa() = Cre® + Coe®

where C1,Cy € R are arbitrary constants. This is called the general solu-
tion of the differential equation.

Well, wait a second... we just finished a section of the course where we
were dealing with linear combinations of vectors. Now we are considering



linear combinations of functions? Can we do this? Do the concepts we
developed when we were considering vectors spaces (e.g. span, basis, linear
independence, etc.) have meaning when we consider solutions of differential
equations?

The answer is a definitive yes... although we will not go far down the path
of extending the vector space notions to functional spaces (in this course).
We will, however, need a few crucial concepts, starting with what it means
for two functions to be linearly independent.

Definition 3.1. A set of functions {f1(x), fa(x), ..., fu(x)} will be said to
be linearly independent on the open interval (a,b) C R if

c1fi(@) + cafo(x) + -+ enfulz) =0 (3)

for xz € (a,b) implies ¢y = cg = -+ = ¢, = 0. Conwversely, the set is said
to be linearly dependent on (a,b) if (3) is satisfied for all x € (a,b) for
non-trivial ¢;, 1t = 1,...,n.

Note: For two functions fi(z) and fo(x) we have that they are linearly
independent if they are not constant multiples of one another. That gives a
very easy check for linear dependence for sets of two functions! All we need

is fo(x) = cf1(x).

It is easy to see that most elementary functions and combinations of
elementary functions are linearly independent everywhere they are defined.
That is to say, the functions e, 3%, sin(z), cos(z), x, 22, In(z), etc., are all
linearly independent of one another. We will have to be occasionally careful
not to get too confident in this property, however. The functions f;(z) =
sin(2x) and f2(z) = sin(x) cos(x), for instance, are linearly dependent (since
the trigonometric identity sin(2z) = 2sin(x) cos(z) implies fi(z) = 2f2(x)
which implies fi(z) — 2f2(z) = 0).

Just as in the case of vectors, there is an easy check for whether func-
tions are linearly independent. Unsurprisingly, it involves a (very carefully
constructed) determinant.

Definition 3.2. The Wronskian of a set of function fi(x), fo(x), ..., fn(x)
s defined as the n x n determinant

B B
W(f1,. s fn) = 13 2} nf
@) @) - 1)



Theorem 3.1. A set of functions fi(x), fa(x),..., fu(x) is linearly inde-
pendent on the interval (a,b) CR if W(f1,..., fn) # 0 for some x € (a,b).
Furthermore, if a set of functions is linearly dependent on the interval (a,b)
then W(f1,..., fn) =0 for all x € (a,b).

Note: It should be noted that W (f,..., f,) = 0 for all € (a,b) is not
sufficient to conclude that the set fi(x), fa(x),- -, fn(z) is linearly depen-
dent, although it is strongly suggestive of the fact!

Example: Show that the functions fi(x) = e®, fa(z) = sin(z) and
fs = cos(x) are linearly independent.

Solution: In order to apply Theorem 3.1, we need to compute the
Wronskian. We have

e’ sin(z) cos(z)
e’  cos(x) —sin(z)
e’ —sin(x) —cos(x)
_ x| cos(z) —sin(z) ‘ 2| sin(z) cos(z)
—sin(x) — cos(x) —sin(xz) —cos(z)
2| sin(xz)  cos(x)
te cos(z) —sin(x) ’

=e"(—1) —e”(0) + e"(—1) = —2¢”.

Since this is everywhere not equal to zero, it follows from Theorem 3.1 that
the functions are linearly independent on R (i.e. the entire real number line).

Now we want to investigate how the concepts of linearly combinations,
linear independence, and the Wronskian of functions helps us solve higher-
order differential equations. We will consider the following general form of
an nt*-order linear and homogeneous differential equation

y ™M (@) + pr@)y" @)+ e (@)Y (@) + pa(@)y(@) = fx)  (4)
together with the initial conditions
y(zo) =bo, y'(z0) =b1, ... y" V(x)=bn1. (5)

Theorem 3.2. Suppose f(x) =0 and y1(z),y2(x),...,ym(z) are solutions
of (4). Then

y(x) = Cry1(x) + Coyz(z) + -+ + Crym ()
is a solution of (4).



Proof. We have that
yO(@) = ol (@) + Copl (@) + -+ + Cryl) (a)

for all i = 0,...,n. We can plug these terms into (4) and collect all the
constant C; terms to get

Z C; (yj(-n) (x) + ;1 (:):)y](n_l(x) + -t poa(2)y () +Pn($)yj($)> =0

j=1
where we know the bracketting term is equal to zero because all y;(z) are
solutions of (4). It follows that y(x) is a solution and we are done. O

This property is the called the principle of superposition. It is worth
noting that this property holds very specifically for linear and homogeneous
different equations (i.e. we need f(x) = 0), and not for others. For example,
the nonlinear differential equation

y'(z) —y? =0

has the general solution

It can be seen, however, that we may not take even a trivial linear combi-
nation (i.e. just scaling!) for this function while maintaining the property
of being a solution. For instance, the function

yi(z) = dy(z) = (z - C)?

fails to be a solution because y/(z) = 2(z —C) and y'/2 = 2 — C (for z > C).
It is also necessary for the equation to be homogeneous. For instance, the
differential equation
y(z)—y=¢
has the general solution
y(x) = (x 4+ C)e”.

For instance, it can be easily checked that y(z) = ze® satisfies the differential
equation; however, the function y;(z) = 2y(z) = 2ze® does not.

The following theorem tells us what every solution of a linear homoge-
neous differential equation must look like wherever it is defined.



Theorem 3.3. Suppose f(x) =0 and p1,p2,...,pn are continuous on (a,b).
Then there are n linearly independent solutions yi(z),y2(z), ..., yn(z) of
(4). Furthermore, every solution y(xz) of (4) can be expressed as a linear
combination of these functions, i.e. we have

y(z) = Cryi(z) + Caya(x) + - + Cryn(z)
for some real constants Cq,Csy,...,C, € R.

This is a terrific result! It tells us that, not only can be combine solutions
as linear combinations to form new solutions, but that every solution can
be constructed in this fashion from some base set of solution. (We could
call this set a basis, if we wished.) Notice in particular that the conditions
of the theorem are satisfies for the whole number line if we have constant
coefficients. It follows that such differential equations have exactly n linearly
independent solutions and that every other solution is a linear combination
of them.

This tells us properties about the general solution of (4) (i.e. the
differential equation alone). What if we add some initial conditions? We
have the following result.

Theorem 3.4. Suppose p1,pa,...,pn and [ are continuous on (a,b). Then
the nt" order homogeneous differential equations (4) together with initial
conditions (5) has a unique solution on the entire interval (a,b).

This result tells us that, so long as the coefficients are smooth functions
of the the independent variable (x, in this case), we are guaranteed to have
a solution and that they do not bunch up in a certain sense. In particular, if
the coefficients are constants, we have exactly one solution which is defined
everywhere. A particular realization of a general solution which satisfies
some initial conditions is called a particular solution.

Note: We do not have the interpretation that each solution through
a particular point (z,y) is unique (as we did with first-order equations).
Rather, we cannot have multiple solutions through a single point (x, y) which
is identical in everything up to their (n — 1)*¢ derivative. For example, two
solutions to a second-order differential equation (4) may go through the
same (z,y) point but must have a different value of y/(z).

Note: Unless the previous results, we are allowed to consider f(z) # 0
for this result. We are guaranteed under very general properties that a so-
lution of the form (4) with initial conditions (5) has a solution. It turns out



that if f(z) = 0 then we also have that the solutions are particularly nice
(in that the principle of superposition applies).

This tells us what the solution set looks like—a linear combination of
linearly independent functions—but it does not tell us how to find these
functions. In fact, this can be very hard for general linear differential equa-
tions with variable coefficients! There are many examples, even second-order
examples, where the solution may only be expressed as a power series ap-
proximation. That is a topic for another course (Math 319, for instance).
For now, we will return to consideration of second-order linear homogeneous
differential equations with constant coefficients.

4 Second-Order Linear Differential Equations

Reconsider the differential equation

In order to solve this equation, we guess the general form y(z) = e™. We
can see very quickly that this yields

ar’e™ 4+ bre™ + e = e (ar® + br +¢) = 0.

Since €™ > 0 for all z € R, it follows that we must have ar? +br +c¢ =0 in
order to have a solution. It follows by the quadratic formula that we have

—b+ Vb% —4ac
2a '

(7)

Ty, T2 =

This computation should be familiar from computing the eigenvalues of a
matrix. It turns out that this is not a coincidence—however, we are not
quite to the point where we can make the relationship between the two
concepts yet. For now, we simply observe that we have three possible cases:

1. If 2 — 4ac > 0 we will have two distinct real values r; and 7.
2. If b — 4ac = 0 we will have one repeated real value .

3. If ¥ — 4ac < 0 we will have a complex conjugate pair r = Re(r) £
Im(r) -i.

10



We have already seen what happens for the first case. The second two
cases (as with eigenvalues...) are the trickier cases. They are captured by
the following result.

Theorem 4.1. Consider the second-order linear homogeneous differential
equation (6) with constant coefficients. Let r1 and ry be defined by (7). Then
the general solution of (6) is:

1. If b — 4ac > 0 the general solution is y(z) = C1e"* + Cye”".
2. If b — 4ac = 0 the general solution is y(x) = C1e™ + Cywe™.
3. If b*> — 4ac < 0 the general solution is

y(x) = el (O cos(Im(r)z) 4+ Cosin(Im(r)z)).

Proof. We know that we only need to find two linearly independent solu-
tions. We have the following cases:

1. Case 1: If the guess y(z) = €' produces two distinct real values r;
and ry, we have that y1(x) = €% and yo(x) = ™% essentially for free.
The only thing remaining is to show that they are linearly independent
solutions (check!) to get

y(z) = Cre™* + Cae™™™.

2. Case 2: If the guess y(x) = €™ only produces the single solution
y1(x) = €"* then we must find another linearly independent solution.
Recall that, in order for two solutions to be linearly dependent, we
required that y2(z) = Cyi(x) (they had to be scalar multiples). For
two solutions to be linearly independent, therefore, we must have some

variance between yo(x) and y1(x). We can represent this difference by
introducing another function (not a constant!) u(x) and writing

ya() = u(@)y: (2). (8)

This quantifies the fact that ys(x) and y; (z) must have more variance
between them than just constant multiplication. We want to determine
a function u(z) for which the function ys(z) is a linearly independent
solution of (6) given that y;(z) = e is a solution.

11



We know that y;(z) = €’ is a solution. This means that ay] + by} +
cy1 = ar?e™ + bre"™ + ce™ = 0 and, since b? — 4ac = 0, we have that
r = —b/(2a), or 2ar + b = 0. It follows from (8) that

T

ya(x) = u(z)y(z) = u(z)e
yh(x) = u'(x)e™ + ru(z)e’™
Yy (x) = u" (x)e™ 4 2ru/ (z)e™ + riu(x)e™.

It follows that

ay () + bys(x) + cyz()
=a(u’(z)e™ + 2ru (z)e™ + r’u(z)e™)

+b(u' ()" + ru(z)e™) + cu(x)e™.

If we factor the terms containing u(z) we arrive at u(x)(ar?e™ +bre’™+
ce’™) = 0 (because e is a solution). Furthermore, if we factor the
terms containing u/(z), we arrive at u'(z)(2ar + b)e™ = 0 (because
r = —b/(2a)). In order to construct a y2(z) which is a solution of (6),

it is enough to have ae"™u”(z) = 0. The only way this can happen is

if
u'(z) =0 = u(z)= Az + B.
It follows that the solution ya(x) is given by

ya(z) = u(x)y1(z) = (Az + B)e'™ = Azxe’™ 4+ Be'™.

We now have

y(z) = Cryi(x) + Coya(x) = Cre™ + Cy(Axe'™ + Be'™)
= (C1 + C2B)e"™ + CyAzxe’™ = Cie™ + Coxe™

and since e"* and ze"* are linearly dependent over x € R, we are done.

. Case 3: If the guess y(x) = €™ yields a complex conjugate pair, we

have that that 71 2 = Re(r) £ Im(r) - i so that

Re(r)ztIm(r)z-i Re(r)xeifm(r):rbi.

This involves the imaginary number ¢ = v/—1, while we are clearly
only interested in real-valued solutions. It turns out that we can use
some arithmetic to get rid of the imaginary parts of the equation and

find two linearly independent real-valued solutions to (6).

12



It is a well-known fact of complex analysis that

e® = cos(z) + isin(z).
This formula is known as Euler’s formula and can be verified (with
a bit of work) by taking the Taylor series expansions of the left- and
right-hand sides of the equation. It follows from this that we have the
solutions

y1(x) = effemzeImnzd — oRe(Mz (cog(Im(r)x) + isin(Im(r)z))

and

Re(r)z ,—Im(r)z-i

ya(x) =e e = efte(r)z (

cos(Im(r)x) — isin(Im(r)z))
We know that any linear combination of these functions produces a
solution of (6). In particular, if we can find a linear combination of
these solutions which are real-valued, then we are in a much better
position. In fact, we can do just that! We notice that

() = 5(2) + () = MO cos(Tm(r)e)

and

() =~ (@) + Lan(w) = O sin(Tm(r)a).

We have had to take a complexr linear combination to obtain a(z),
which may seem a little sneaky, but we are perfectly justified in doing
so. The outcome is two solutions which are linearly independent on
x € R (check!). It follows that the general solution is

y(z) = C1efeMT cos(Im(r)x) + Coef®)? sin(Im(r)z).
O

Example 1: Find the general solution of 4y”(x) + 12y'(z) 4+ 9y(x) = 0.

Then find the particular solution for y(0) = 2 and 3/(0) = 0.

Solution: We guess the solution form y(x) = e™. This gives

4y (z) + 12y (z) + 9y () = "™ (4r® +12r +9) = "(2r +3)* = 0.

It follows that we only have a solution if » = —3/2. Since this is a repeated
root, we are in Case 2 and the general solution is given by

y(z) = Cre= B/ 4 CozeB/2)7,

13



To solve for the particular solution, we compute
Y (z) = —20167(3/2):” + Coe= /27 _ ;C’Qﬂf(?’ﬂ)x.
The conditions y(0) = 3 and 3/(0) = 0 gives the system
Ch =2
3
—501 + CQ - 0

We can quickly solve this to get C7 = 2 and Cy = 3. It follows that the
particular solution is

y(z) = 2~ G/D7 4 300~ 6/2),

Example 2: Find the general solution of y”(z) + 2y/(z) + 2y(x) = 0.
Then find the particular solution for y(0) = 1 and 3/(0) = —1.

Solution: We guess the solution y(x) = ™. This gives
Y (z) + 20 (z) + 2y(z) = " (r2 + 2r +2) = 0.
The quadratic formula gives the solution

 2+.4-8
e

r —1+4.
Since this a complex root, we are in case 3 and the general solution is
y(x) = Cre” " cos(z) + Care™ “sin(x).

To solve for the particular solution, we compute
y'(x) = —Cre " cos(z) — Cae " sin(x) — Cre " sin(x) + Coe™ ¥ cos(x)
= —Cie “(cos(z) + sin(x)) + Cre™*(cos(z) — sin(x)).
The conditions y(0) = 1 and y(0) = —1 gives the system
Ch =1
—-C1+Cy = —1.

It follows immediately that C; = 1 and C'y = 0 so that the particular solution
is
y(z) = e *cos(x).
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