
MATH 320, WEEK 13:
Pendulum Model, Non-Homogeneous

Linear DEs

1 Pendulum/Spring Model

Let’s reconsider the pendulum/spring model from last week. We used New-
ton’s second law F = ma to derive the equation

m
d2x

dt2
= Frestoring + Ffriction = −cdx

dt
− kx(t) (1)

which gives the second-order homogeneous linear differential equation with
constant coefficients

m
d2x

dt2
+ c

dx

dt
+ kx(t) = 0. (2)

We can now solve this equation! We can also interpret the solution of
this equation. First of all, we have the guess solution y(x) = ert yields

r1,2 =
−c±

√
c2 −mk

2m

The only thing that is different than the general case is that the constants
are assumed, for physical reasons, to be strictly positive (i.e. m > 0, c > 0,
k > 0).

We have the following three cases:

1. Overdamped: If c2 > 4mk then (1) has the general solution

x(t) = C1e
r1t + C2e

r2t.

2. Critically damped: If c2 = 4mk then (1) has the general solution

x(t) = C1e
rt + C2te

rt.

3. Underdamped: If c2 < 4mk then (1) has the general solution

x(t) = eRe(r)t(C1 cos(Im(r)t) + C2 sin(Im(r)t)).
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Note: The positivity of the physical constants guarantees that either
r < 0 or Re(r) < 0 so long as c > 0. (Notice that this is not necessarily
true for the general case.) This guarantees that the exponential is always
a decreasing exponential. This says that the solution is always decaying
toward its resting state, as we would expect from a damped pendulum or
spring.

Note: It is easy to see where the classifications (overdamped, critically
damped, and underdamped) come from. In Case (1) the damping parame-
ter exceeds the other combined parameters (c2 > mk), in Case (2) they are
equal (c2 = mk), and in Case (3) the other parameters exceed the damping
(c2 < mk).

Note on physical units: In order to associate (2) with actual physical
models, we will need to give units to the variables and parameters. To
make computations as straight-forward as possible, we will consider the
units meters (m), kilograms (kg), and seconds (s) for length, mass, and
time, respectively. The question, remains, however, of what the units of the
parameters c and k are. To answer this (as best we can), we recall that a
Newton is defined as

N = 1 kg
m

s2
.

This is the basic unit of force. We recall that (2) was derived from a force
equation—consequently, the unit of each individual term in (2) (i.e. mx′′(t),
cx′(t) and kx(t)) must be Newtons! Since we know the units of x(t) (m),
x′(t) (m/s) and x′′(t) (m/s2) we see that the required units for c and k are

c ∼ kg/s =
kg(m/s2)

m/s
=

N

m/s

k ∼ kg/s2 =
kg(m/s2)

m
=
N

m
.

Thus we will give the restoring constant k in terms of Newtons per meter
and the frictional constant c in terms of Newtons per unit velocity or New-
tons per meter per second.

Note on periodic solutions: In solutions to simple mechanical sys-
tems, we often encounter the form C1 cos(ω0t)+C2 sin(ω0t), which represents
some sort of periodic motion. What is not obvious from this form, however,
is that this is actually equivalent to a single phase-shifted trigonometric
function with a different amplitude. For instance, we can easily check that
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3 cos(t) + 4 sin(t) is the same as 5 cos(t − 0.927) (graph it!). In general, we
always have that

C1 cos(ω0t) + C2 sin(ω0t) = A cos(ω0t− α)

for some A and α. We will see how to compute A and α through examples.
(You may have already been introduced to the method in a calculus course.)

Although the exponential dominantes the long-term behavior (check by
taking the limit as t → ∞!), there are important qualitative differences
between the three cases. The difference comes in how the solutions approach
the resting state.

1. In Case 1, after a short transient period, solutions approach x = 0
monotonically. That is to say, solutions settle into a trajectory which
consistently gets closer as time passes—each second they are closer to
x = 0 than the last. (Note that trajectories may initial overshoot the
resting position if the initial velocity is sufficiently high.)

2. In Case 2, solutions again settled into a trajectory which consistently
gets closer to the resting position as time passes, but it takes longer
to settle into that trajectory. In fact, it takes the maximal amount of
time—if it takes any longer, it will enter into Case 3.

3. In Case 3, solutions oscillate as they approach x = 0. On average, the
solutions approach the resting position, but they continually overshoot
the resting position and then bounce back, and overshoot again. Notice
that these oscillations continue forever!

The three cases are illustrated by Figure 1. Notice how the exponential
dominates in all three cases. Even in Case 3, where solutions oscillate con-
tinuously, we may obtain important information about the way in which
solutions approach x = 0 by bounding by appropriate exponential functions.

Example 1: Consider a 2 kg weight attached to the end of a spring
which requires a force of 8 Newtons to stretch one meter. Suppose the
spring does not experience any damping. If the mass is initially stretched
2 meters to the right and released with an intial velocity of 2 meters per
second to the right, find the solution describing the position of the mass
as a function of time. Write the solution in the phase-shifted cosine form
x(t) = A cos(ω0t+ α).
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(a) (b) (c)

Figure 1: Example trajectories of the displacement of a damped pendu-
lum/spring for the three cases: (a) overdamped; (b) critically damped; and
(c) and underdamped. Notice that oscillations occur in the underdamped
case.

Solution: The given information implies that m = 2, k = 8 and c = 0.
This gives the model

2
d2x

dt2
+ 8x(t) = 0

with initial conditions x(0) = 2 and x′(0) = 2. The guess y(x) = erx gives

erx(2r2 + 8) = 2erx(r2 + 4) = 0

so that r = ±2i. It follows that the general solution has the form

x(t) = C1 cos(2t) + C2 sin(2t).

To find the particular solution satisfying the initial conditions, we must
compute

x′(t) = −2C1 sin(2t) + 2C2 cos(2t).

The initial conditions give

x(0) = 2 =⇒ C1 = 2

x′(0) = 2 =⇒ 2C2 = 2 =⇒ C2 = 1.

It follows that the particular solution is

x(t) = 2 cos(2t) + sin(2t).

We want to put the solution in the form x(t) = A cos(ω0t − α). What
we need to do is expand A cos(ω0t− α) according to

A cos(ω0t− α) = A cos(α) cos(ω0t) +A sin(α) sin(ω0t).
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Comparing with the original equations gives ω0 = 2, and the system

C1 = A cos(α)

C2 = A sin(α).
(3)

If we square these equations, add them, and then simplify we get

A =
√
C2
1 + C2

2 .

Furthermore, we can divide the equations to get

α = tan−1
(
C2

C1

)
.

(Note that we may have to adjust α by a factor of π depending on which
quadrant it is in. It is a good idea to take the answer here and check with
the system (3).)

For our example, we have C1 = 2 and C2 = 1 so that A =
√

22 + 12 =
√

5
and α = tan−1(1/2) ≈ 0.4636. We can check that this satisfies

√
5 cos(0.4636) =

2 and
√

5 sin(0.4636) = 1 so that we do not need to adjust by a factor of π.
It follows that the solution can be written

x(t) =
√

5 cos(2t− 0.4636).

Example 2: Reconsider the set-up provided in Example 1, but assume
there is a damping of 4 Newtons for each meter/second of velocity. Find the
solution describing the position of the mass as a function of time. Write the
solution in the phase-shifted cosine form x(t) = A(t) cos(ω0t+ α).

Solution: The given information tells us that we have m = 2, k = 8,
and c = 4. This gives the model

2
d2x

dt2
+ 4

dx

dt
+ 8x(t) = 0

with initial conditions x(0) = 2 and x′(0) = 2. The guess y(x) = erx gives

erx(2r2 + 4r + 8) = 2erx(r2 + 2r + 4) = 0

which implies

r1,2 =
−2±

√
4− 16

2
= −1±

√
3i.
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The general solution is given by

x(t) = e−t(C1 cos(
√

3t) + C2 sin(
√

3t).

In order to determine the particular solution, we must find x′(t). We
have

x′(t) = −e−t
(
C1 cos(

√
3t) + C2 sin(

√
3t)
)

+
√

3e−t
(
−C1 sin(

√
3t) + C2 cos(

√
3t)
)
.

The initial conditions result in the system

C1 = 2

−C1 +
√

3C2 = 2.

It follows that C1 = 2 and C2 = 4√
3
. It follows that the particular solution

is

x(t) = e−t
(

2 cos(
√

3t) +
4√
3

sin(
√

3t)

)
.

A more insightful form of this equation is to write it as

x(t) = A(t) cos (ω0t+ α) .

As before, we have A =
√
C2
1 + C2

2 =
√

22 + (4/
√

3)2 ≈ 3.0551 and α =

tan−1(C2/C1) = tan−1((4/
√

3)/2) = tan−1(2/
√

3) = 0.8571. We can easily
checked that 3.0551 cos(0.8571) = 2 and 3.0551 sin(0.8571) = 4√

3
so that we

do not need to adjust by a factor of π. It follows that the solution can be
written as

x(t) = 3.0551e−t cos (2t− 0.8571) .

2 Nonhomogeneous Linear Differential Equations

Suppose now that we take our spring or pendulum but, in addition to the
restoring and frictional forces, and apply an external forcing term to the
system.

For example, consider the simple act of shaking a pendulum. Even if we
shake the pendulum in a very regular way (say, like a sine function) we will
undoubtedly end up with a different solution. But how does the underlying
model change? Let’s see!
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We now want to reconsider Newton’s second law but with an addition
independent forcing term f(t). By independent, we mean that it does not
depend on the state of the pendulum (position or velocity). The force we add
(e.g. shaking) comes from an external source (e.g. our hand, or a motor).
In general, we preset the forcing to depend only on the time we look at the
system. Together with the restoring and frictional forces, this gives

F = Frestoring + Ffriction + Fforcing = −kx(t)− cdx
dt

+ f(t).

The resulting differential equation is

m
d2x

dt2
+ c

dx

dt
+ kx(t) = f(t). (4)

There are several very important things to note about this equation:

• It is still a second-order linear differential equation with constant coef-
ficients! It should not come as a surprise that the techniques we used
to solve such differential equations will be relevant here.

• The external forcing term f(t) ensures that the differential equation
is nonhomogeneous. This seems like a small change—and we will see
that we will be able to handle this change—but at first glance this
is very bad news. We are no longer guaranteed that the principle of
superposition or decomposition of solutions will hold.

In order to investigate how we might attempt to solve such equations,
let’s consider a specific example. Suppose we want to solve

d2x

dt2
+ 4x(t) = 12t.

How can we solve this equation?
The answer may be surprising, but it is not the first time we have heard

it. Let’s just guess. This time, however, let’s guess a solution which satisfies
the forcing term specific. In other words, we want to guess a single solution
of the entire equation. In fact, this is surprisingly easy to do. We can see
immediately that x(t) = 3t is a solution of the equation since it satisfies
4x(t) = 12t and x′′(t) = 0. (Probably the only way we would not have seen
this would have been to overthink the problem!)

In fact, finding this solution is sufficient to completely solve the prob-
lem! More specifically, once we have found a particular solution xp(t) which
satisfies the nonhomogeneous equation (4), we can reduce the problem into
a linear homogeneous equation.

This is the moral of the following result.
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Theorem 2.1. Consider an nth order linear, nonhomogeneous differential
equation of the form

An
dny

dxn
+An−1

dn−1y

dxn−1
+ · · ·+A1

dy

dx
+A0y(x) = f(x). (5)

Then any solution of (5) can be written

y(x) = yc(x) + yp(x)

where yp(x) is a particular solution of (5) and the complementary function
yc(x) = C1y1(x) + · · ·+ Cnyn(x) is the solution of the homogeneous system

An
dny

dxn
+An−1

dn−1y

dxn−1
+ · · ·+A1

dy

dx
+A0y(x) = 0. (6)

Note: This result tells us that, by solving homogeneous linear systems,
we have already done most of the work for solving nonhomogeneous linear
systems. This is awesome! We only need to worry about this little extra bit
and then we are done!

3 Method of Undetermined Coefficients

The question then becomes how we find the particular solution. The answer
may not be satisfying, but it is becoming a common one: we are going to
guess! We will not be guessing at random, however. We notice that the
left-hand side of (5) involves just y and its derivatives. What we need is a
form of yp(x) which can be differentiated to give the form of f(x) on the
right-hand side. We notice that

d

dx
[polynomial] = polynomial

d

dx
[exponential] = exponential

d

dx
[sine and/or cosine] = sin and/or cosine.

This suggests that we guess trial functions yp(x) of the following forms:

yp(x) = Anx
n +An−1x

n−1 + · · ·+A1x+A0

yp(x) = Bert

yp(x) = A cos(ax) +B sin(ax)

(7)
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For the respective cases. In order to solve for the constants in the trial
function yp(x), we will need to plug the function into (5).

To summarize, we have the following steps for a linear homogeneous
differential equations with constant coefficients (5):

1. Find the general solution yc(x) of the associated homogeneous equation
(6).

2. Select a trial function yp(x) of some combination of the forms (7)
(depending on f(x)).

3. Plug the trial function yp(x) into (5) and solve for the undetermined
coefficients.

4. Write the general solution as y(x) = yc(x) + yp(x).

This method is fittingly called the method of undetermined coefficients.

Example 1: Find the general solution of the differential equation

d2y

dx2
+ 4y(x) = e−x − 3x3.

Solution: We need to first solve the homogeneous equation

d2y

dx2
+ 4y(x) = 0.

The guess yc(x) = erx gives erx(r2 + 4) = 0 so that r = ±2i. It follows that

yc(x) = C1 cos(2x) + C2 sin(2x).

We now need to use a trial function yp(x) with a suitable form that it
could give e−x − 3x3 after differentiation. We try

yp(x) = Ae−x +Bx3 + Cx2 +Dx+ E

=⇒ y′p(x) = −Ae−x + 3Bx2 + 2Cx+D

=⇒ y′′p(x) = Ae−x + 6Bx+ 2C.

It follows that the differential equation gives

y′′p(x) + 4yp(x)

= (Ae−x + 6Bx+ 2C) + 4(Ae−x +Bx3 + Cx2 +Dx+ E)

= 5Ae−x + 4Bx3 + 4Cx2 + (6B + 4D)x+ (2C + 4E)

= e−x − 3x3.

9



It follows that we need to satisfying

5A = 1

4B = −3

4C = 0

6B + 4D = 0

2C + 4E = 0.

It follows that we have A = 1/5, B = −3/4, C = 0, D = 9/8, and E = 0.
The corresponding particular solution is

yp(x) =
1

5
e−x − 3

4
x3 +

9

8
x.

The general solution is therefore

y(x) = yc(x) + yp(x) = C1 cos(2x) + C2 sin(2x) +
1

5
e−x − 3

4
x3 +

9

8
x.

Note: It is possible that we may need to use more complicated combi-
nations of these functions. For instance, if the forcing term is ex sin(x), we
will need to use yp(x) = Aex cos(x) + Bex sin(x). A term like x2e−x would
need (Ax2 +Bx+ C)e−x, and so on.

Note: The arguments inside the trigonometric and exponential terms
are also important. If there are distinct constants, we will need to use
distinct trial functions. For instance, the forcing term f(x) = sin(2x) +
cos(3x) requires the trial function yp(x) = A cos(2x)+B sin(2x)+C cos(3x)+
D cos(3x).

4 Modifications

Now find the general solution of the differential equation

d2y

dx2
+ 4y(x) = cos(2x).

We already have the complementary function yc(x) = C1 cos(2x) +
C2 sin(2x). We need to guess the form of the trial function yp(x). We
need terms which can produce sin(2x) upon differentiation so we choose

yp(x) = A cos(2x) +B sin(2x).
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This gives

y′p(x) = −2A sin(2x) + 2B cos(2x)

y′′p(x) = −4A cos(2x) + 4B sin(2x).

It follows that we have

y′′p(x) + 4yp(x)

= −4A cos(2x) + 4B sin(2x) + 4(A cos(2x) +B sin(2x)) = 0.

We need to match constants so that this equals f(x) = sin(2x) but the
term has vanished. We have nothing left to work with! Something has gone
terribly wrong, but what?

We might notice that we should have expected this. After, the comple-
mentary function is yc(x) = C1 cos(2x) + C2 sin(2x), which meant we know
that the combination of functions in the trial function had to vanish when
it was substituted into the left-hand side of our differential equation. This
raises a very important concern which we will have to identify:

• The trial functions (7) will only work if the individual functions do not
appear in the complementary function yc(x).

In other words, if a forcing term coincides with a term already contained
in the dynamics of the unforced system, we will not be able to construct
nontrivial trial function in the same way as we have been. (This will have
a very important interpretation when we return to the consideration of our
physical pendulum/spring model!)

It turns out that in this case we will have to use different trial functions.
What we really need to do is generate other linearly independent solutions.
We have already done this! For instance, we found that if we had a solution
y1(x) = ex and needed another linearly independent one, that we could use
y2(x) = xex. If we need another one, we went up to y3(x) = x2ex, and so
on.

The same trick will work here! We will take our trial functions to be
the same as used in (7) but with as many powers of x are required to give
a linearly independent function. More succinctly, if the terms in the trial
functions (7) appear in the complementary function yc(x), we must instead
use the trial functions

yp(x) = Anx
n+s +An−1x

n+s−1 + · · ·+A1x
s+1 +A0x

s

yp(x) = Bxsert

yp(x) = Axs cos(ax) +Bxs sin(ax)

(8)
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where s is the lowest power which produces a term which is linearly inde-
pendent of those in the complementary solution.

Example: Reconsider the example

d2y

dx2
+ 4y(x) = cos(2x).

The complementary function was yc(x) = C1 cos(2x) + C2 sin(2x) so we
are not allowed to use yp(x) = A cos(2x) + B sin(2x) as a trial function.
Instead, we must use

yp(x) = Ax cos(2x) +Bx sin(2x).

This gives

y′p(x) = A cos(2x) +B sin(2x)− 2Ax sin(2x) + 2Bx cos(2x)

y′′p(x) = 4B cos(2x)− 4A sin(2x)− 4Ax cos(2x)− 4Bx sin(2x).

Plugging into the DE gives

y′′p + 4yp

= 4B cos(2x)− 4A sin(2x)− 4Ax cos(2x)− 4Bx sin(2x)

+ 4(Ax cos(2x) +Bx sin(2x))

= 4B cos(2x)− 4A sin(2x)

= cos(2x).

It follows that we need A = 0 and B = 1/4 so that we have the particular
solution

yp(x) =
1

4
x sin(2x).

The general solution of the differential equation is therefore

y(x) = C1 cos(2x) + C2 sin(2x) +
1

4
x sin(2x).

5 Forced Mechanical Systems and Resonance

Let’s consider what happens for the undamped (low-amplitude) pendulum
and spring model when the forcing is sinuisoidal—that is to say, when the
forcing can be represented by some combination of sines and cosines. This
represents shaking the undamped pendulum or spring with a fixed frequency.
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Consider the example of solving the following differential equation (cor-
responding to the physical model) with initial conditions x(0) = 0 and
x′(0) = 0:

d2x

dt2
+ 4x(t) = cos(ωt)

where ω 6= 2. (This corresponds to the pendulum system for a mass of 1
kg and a restoring constant k of 4 Newtons per meter. The parameter ω
controls the frequency of the shaking and the initial conditions correspond
to starting the system at rest.)

We can have already seen that the complementary function for this dif-
ferential equation is

xc(t) = C1 cos(2t) + C2 sin(2t).

Since ω 6= 2, we use the trial function xp(t) = A cos(ωt) + B sin(ωt). This
gives

x′′p(t) = −Aω2 cos(ωt)−Bω2 sin(ωt)

so that we have

x′′p(t) = −Aω2 cos(ωt)−Bω2 sin(ωt) + 4(A cos(ωt) +B sin(ωt))

= (4− ω2)(A cos(ωt) +B sin(ωt))

= cos(ωt).

Since ω 6= 2 implies ω2 6= 4, it follows that A = 1/(4 − ω2) and B = 0 so
that we have the general solution

x(t) = C1 cos(2t) + C2 sin(2t) +
1

4− ω2
cos(ωt).

This has derivative

x′(t) = −2C1 sin(2t) + 2C2 cos(2t)− ω

4− ω2
sin(ωt)

so that the initial conditions x(0) = 0 and x′(0) = 0 give the system

C1 = − 1

4− ω2

2C2 = 0

which implies C1 = −1/(4− ω2) and C2 = 0. It follows that the solution is

x(t) = − 1

4− ω2
cos(2t) +

1

4− ω2
cos(ωt)

=
1

4− ω2
(cos(ωt)− cos(2t)) .
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In terms of simplification, this is pretty good, but in fact we can do
a little better. The trigonometric identities cos(A + B) = cos(A) cos(B) −
sin(A) sin(B) and cos(A−B) = cos(A) cos(B)+sin(A) sin(B) can be subtract
from one another to give 2 sin(A) sin(B) = cos(A−B)− cos(A+B). If we
take A = 1

2(2 + ω)t and B = 1
2(2− ω)t we have

A+B = 2t, and A−B = ωt.

Remarkably (but usefully?), this implies that the solution can be written
as the single term

x(t) =
2

4− ω2
sin

(
1

2
(2 + ω) t

)
sin

(
1

2
(2− ω) t

)
.

Okay, this is getting a little ridiculous. What is the point of all this alge-
bra? Well, this is actually incredibly insightful for of the solution. We now
have the solution decomposed into two sine functions with different frequen-
cies (corresponding to the difference in the natural and forcing frequencies!).
In particular, if ω is near 2, there is a separation of time-scales in the two
modes. We have that

1. There is a slow oscillatory mode with wavelength (4π)/(2− ω). This
mode can be thought of as an envelop which restricts all other modes
(since all other modes must multiply through this function, so can only
be as big as this slow mode allows it to be). (See Figure 2(a))

2. There is a fast oscillatory mode with wavelength (4π)/(2 + ω). This
mode oscillates faster than the other mode but is restricted through
each period by its slower counterpart.

3. Since sine is bound by −1 and 1, the maximal amplitude of the solution
is 2/(4− ω2).

This raises a very interesting question: What happens as the forcing
frequency is changed related to the fixed natural frequency of the system
(i.e. the frequency the undamped pendulum or spring swings when left
alone)? In particular, what happens as ω → 2?

We can consider this as ω approaches 2 from either side, since the sepa-
ration of time-scales holds. We make the following observations:

1. The ω approachs 2, the wavelength of the slow mode explodes while
the wavelength of the fast mode stays roughly the same. That is to say,
the separation in time-scales intensifies in that the number of times
the fast mode completes its cycle before the slow mode completes its
cycle becomes unbounded. (See Figure 2(b).)
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2. The amplitude 2/(4− ω2) also explodes. In fact, in the limit, we have
that the amplitude is infinite. (See Figure 2(c).)

(a) (b)

(c)

Figure 2: Solution of the mechanical system with sinusoidal forcing with (a)
ω = 1.7; (b) ω = 1.875; and (c) ω = 1.99. Notice that the y-axis grows as ω
gets closer and closer to 2.

Something seems to be going incredibly wrong in this example. How can
we have the amplitude of our solution explode to infinity? Worst still, we
know that the solution still oscillates by a fixed period, so as time goes on
and one the solution (i.e. the pendulum or spring) will make jumps from
the positive extreme to the negative extreme in the same amount of time!
What is going on?

Let’s reconsider our physical example. What is really happening as ω
approaches 2? Recall that 2 is the natural frequency term for the underlying
system. Is the term controlling how the body naturally oscillates if simply let
go. Now imagine shaking that in a very particular way—and in particular,
in a way that is completely in phase with the natural rhythm of the body.
Well, then, every time the pendulum naturally wants to kick left, we give
it an extra push, and every time it wants to kick right, we give it an extra
push in that direction, too. If we do this exactly in sync with the body’s
natural rhythm, we imagine that the amplitude will certainly grow!

Before we get carried away with this example too far, we should rec-
ognize that there are certain physical constraints (e.g. damping, whether
in the form of friction or something else). We also neglected other physical
concerns. For a pendulum, for example, we will swing over the top far before
we will extend off to infinite in any diretion. And, for a spring, we imagine
that if we compress or overextend the spring too much it will simply break
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rather than extend to infinite length. Nevertheless, this is an interesting
phenomenon to investigate and is a concern in many applications. What we
have discovered is resonance.

We might wonder what has happened with our solution. After all, we
cannot very well have x(t) = ∞ as a meaningful solution. Rather, the
solution breaks down, but if we consider the original differential equation
we immediately see why. If we have ω = 2 we are in the case where we may
not use a trial function of the form xp(t) = A cos(2t) + B sin(2t). We have
already solved this using the trial function xp(t) = At cos(2t) + Bt sin(2t)
and got

x(t) = C1 cos(2t) + C2 sin(2t) +
1

4
t sin(2t).

The initial conditions x(0) = 0 and x′(0) = 0 give C1 = C2 = 0 give the
simple solution

x(t) =
1

4
t sin(2t).

Just as we expected, we have a solution which oscillates with increasing
amplitude (as t grows). In other words, we have filled in the gap in our
previous physical reasoning. Even though the solution methods were com-
pletely different, the limit of the previous solution approaches this resonate
solution as ω approaches 2!
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