
MATH 320, WEEKS 14 & 15:
First-Order (Linear) Systems of

Differential Equations

1 Motivating Example

A few months ago, we imagined a mathematical model for the chemical
reaction X → Y subject to continuous inflow of X and outflow of both X
and Y . If we let the concentrations of X and Y be denoted x = [X] and
y = [Y ], we imagined the following interactions:

1. Inflow to X at constant rate (say α), and outflow (through conversion
to Y and outflow from tank) proportional to current concentration of
X (say βx).

2. Inflow to Y (through conversion from X) proportional to current con-
centration of X (say γx), and outflow (through outflow from tank)
proportional to current concentration of Y (say δy)

Making suitable numerical choices for the proportionality constants (α =
β = 1 and γ = δ = 2), we arrived at the following differential equation
model:

dx

dt
= 1− x

dy

dt
= 2x− 2y.

(1)

Although we did not classify it as such at the time, this is an example of
a first-order system of linear differential equations, which is the final topic
of the course. Before we explicitly state our objectives and methods for this
topic area, there are a few things worth noting about this specific model:

• While we still only have one independent variable (t), we now have two
dependent variables (x and y). Since there are two variables which
depend on t, finding a solution of (1) means finding both a x(t) and
a y(t) which satisfy the differential equations! Similarly, checking or
verifying a solution means checking that both given functions satisfy
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the DEs. For this example, we can easily check that x(t) = 1 − e−t
and y(t) = 1− 2e−t + e−2t is a solution because

dx

dt
=

d

dt

[
1− e−t

]
= e−t = 1− [1− e−t] = 1− x(t)

and

dy

dt
=

d

dt

[
1− 2e−t + e−2t

]
= 2e−t − 2e−2t

= 2[1− e−t]− 2[1− 2e−t + e−2t]

= 2x(t)− 2y(t).

• The equations can still be classified in the exact same way as we clas-
sified them before. For instance, we will say that this system of DEs
is first-order because the highest derivative (of either x or y!) is first-
order, that it is linear because all the terms we are solving for and their
derivatives (i.e. x, y, x′, and y′) appear isolated from one another, and
that it is nonhomogeneous because not every term involves an x, a y,
or one of their derivatives (because of the 1 in the first equation).

• We were able to solve this system at the time by noticing that the
first equation depended on x only, and not y, and consequently we
could solve for x(t) before consider y(t). This is not a general prop-
erty of systems of differential equations! In general, the variables are
interdependent—that is to say, the equation for x′ depends on x and
y, and the equation for y′ depends on x and y as well. In this case,
we cannot hope to solve for one variable first and then substitute into
the remaining equation. We will have to develop more sophisticated
machinery!

2 General First-Order Systems

In general, we can consider systems of differential equations of arbitrary
order. For instance, if we considered a coupled pendulum system (say, one
pendulum hanging below another), we would end up considering a system
of coupled (i.e. interdependent) secord-order differential equations. That is
to say, we would arrive at a pair of equations of the form x′′ = stuff and
y′′ = stuff.
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All the theory and methodology we develop, however, will be geared
toward first-order systems, i.e. systems where the highest derivative in any
dependent variable is a first-order derivative. That is to say, we will be
considering systems of differential equations of the form

dx1
dt

= f1(t, x1, x2, . . . , xn)

dx2
dt

= f2(t, x1, x2, . . . , xn)

...

dxn
dt

= fn(t, x1, x2, . . . , xn).

(2)

We might think that we are losing some important information by re-
stricting ourselves to such an idealized set of equations, but in fact the
methods for analysing first-order systems are actually sufficient to (almost
always!) analyse higher-order systems. The reason is that higher-order sys-
tems differential equations can (almost always!) be rewritten as a system of
first-order differential equations by an appropriate change of variables. We
have the following general methodology:

• Consider a general nth order differential equation written in the form

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)). (3)

• Make the variable substitutions x1(t) = x(t), x2(t) = x′(t), x3(t) =
x′′(t), . . ., xn(t) = x(n−1)(t).

• Notice that we have x′1(x) = x2(t), x
′
2(t) = x3(t), . . .. In general, we

have x′i(t) = xi+1 for i = 1, . . . , n− 1.

• Notice that this only works for the first n− 1 variables. For the final
nth function xn(t) must return to the original system. We notice that
(3) implies x′n(t) = f(t, x1(t), x2(t), . . . , xn(t)).

• The system of first-order differential equations corresponding to (3) is

x′1 = x2

x′2 = x3
...

x′n−1 = xn

x′n = f(t, x1, x2, . . . , xn).

(4)
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• The initial conditions x(t0) = b1, x
′(t0) = b2, . . ., x

(n−1)(t0) = bn
become

x1(t0) = b1, x2(t0) = b2, . . . xn(t0) = bn.

Example: Rewrite the initial value problem

x′′(t) + 4x′(t) + 4x(t) = sin(2t) (5)

x(0) = 5, x′(0) = −1 (6)

as an initial value problem for a system of first-order differential equations.

Solution: We make the substitutions x1(t) = x(t) and x2(t) = x′(t).
This gives the relationship x′1(t) = x2(t). In order to find an equation for
x′2(t) we need to rewrite (5) in the form

x′′(t) = sin(2t)− 4x′(t) + 4x(t).

We can see that this corresponds to the required form x′′(t) = f(t, x(t), x′(t))
which becomes x′2(t) = f(t, x1(t), x2(t)). The desired system of first-order
differential equations is therefore

x′1 = x2

x′2 = 4x1 − 4x2 + sin(2t)

and the initial conditions x(0) = 5 and x′(0) = −1 become

x1(0) = 5, x2(0) = −1.

We have successfully transformed the original second-order differential equa-
tion into a system of two first-order differential equations!

While this process may not seem like much, it is the first step toward
defining a general methodology for studying differential equations for very
complicated systems! We may shrug off the importance of first-order differ-
ential equations, but there are several very important notes to make:

• Notice that the order of the original system (3) corresponds to the
number of variables in (4). This is a general propery (although, if there
is a system of higher-order equations, the number of overall variables in
the complete first-order system formulation will be the sum over all of
the individual orders). For example, a 12th order differential equation
in x will become a first-order system with exactly 12 variables.
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• In some sense, the initial value problem for the system formulation (4)
makes more sense than the original set-up (3). In order to completely
solve the system (3), we require initial conditions on x(t) and all of its
derivatives up to the (n − 1)st order. This was a little strange—after
all, why does a 7th order equation require exactly 7 initial conditions,
and not 5 or 12? In the setting of (4), however, this becomes clear.
We require initial conditions on xi(0), i = 1, . . . , n, because there
are exactly n independent variables we need to solve for. If we do
not specify where we start for each variable, we will have no hope of
figuring out where we go from there!

• Notice that the example system (5) corresponds to a forced spring/pendulum
example. We will revisit such equations later. For now, notice that
the physical importance of the new variables: x1(t) corresponds to
the position of the mass x(t), and x2(t) corresponds to the its velocity
x′(t). In order words, we have constructed a first-order system in the
position and velocity of the mass!

• There are strong geometric reasons to prefer first-order systems to
higher-order differential equations. The first derivative is very easy
to interpret graphically—it is the slope of the solution function at the
given point. For example, if we have x′(t0, x0) = 1 at a particular point
(t0, x0), we know that the slope of the solution through (t0, x0) is 1.
But what does it mean to have x′′(t0, x0) = 1? It means something
to do with the concavity of the solution, for sure, but it would take
some significant thought to construct a meaningful picture out of this
information (i.e. something like a slope diagram).

If reformulate the problem as a system of first order differential equa-
tions, however, we avoid this problem! Instead of having to interpret
the second-order derivative, we have to consider the slope of two vari-
ables. This interpretation will allow us to (easily!) draw pictures
corresponding to higher-order systems and also to develop numerical
methods for estimating solutions when solutions cannot be solved for
explicitly (beyond the scope of this course).

3 First-Order Linear Homogeneous Systems of Dif-
ferential Equations in Two Variables

We start by consider the baseline equations with which we will be working:
a system of two linear, first-order homogeneous differential equations with
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constant coefficients:

dx

dt
= ax+ by

dy

dt
= cx+ dy.

(7)

Before considering how we might find an analytic solution (x(t), y(t)) to
such a system, let’s first ask a more basic question: What can a system like
this do? Let’s consider this question for a geometrical point of view; in other
words, let’s try to draw a picture. We make the following observations:

• The system is first-order so that, at every point (x0, y0) in the (x, y)-
plane we know whether the solution through the point (x0, y0) is
pointed right or left (x′(t) > 0 or x′(t) < 0) or up or down (y′(t) > 0
or y′(t) < 0).

• We know the equation x′(t) = 0 corresponds to ax + by = 0 or y =
−(a/b)x and y′(t) = 0 corresponds to y = −(c/d)x. In other words,
we know exactly where the solution (x(t), y(t)) is completely flat or
completely straight up/down.

Example 1: Consider the system of differential equations

dx

dt
= −x+ 3y

dy

dt
= 3x− y.

We can easily determine that

dx

dt
= 0 =⇒ y =

1

3
x

and
dy

dt
= 0 =⇒ y = 3x.

The question then becomes what happens in the regions between these two
lines. It should not take too much convincing that, if we only consider ar-
rows pointing in the dominant directions (NW, NE, SW, SE, say) that we
arrive at the picture given by Figure 1(a).
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Example 2: Consider the system of differential equations

dx

dt
= −x+ 5y

dy

dt
= −2x+ y.

We can easily determine that x′ = 0 implies y = (1/5)x, and that y′ = 0
implies y = 2x. When we consider the orthants, we end up with a picture
that looks something like Figure 1(b).

x

y

x

y
(a) (b)

y'=0

x'=0

y'=0

x'=0

Figure 1: A rough sketch of the two example systems. Even without solving
the equations, we can get some sense about how the solutions behave.

Without even attempting to solve the system of differential equations,
we can tell very important things about the types of behaviors we might
encounter. It looks like the solutions of the first system originate somewhere
in the top-left or bottom-right, pool together, then travel toward either the
top-right or the bottom-left. Solutions of the second system, by contrast,
appear to spiral around (0, 0).

4 Solutions to Linear Systems

In order to investigate how we might find a solution to these systems, or
a general system such as (7), let’s make an observation about the form of
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the equation. Notice that the right-hand side is something we have already
seen, but not in the differential equation portion of the course. In fact, it is
exactly the type of thing we saw when consider linear systems of equations.
In that section of the course, we found that linear systems could be written
in the form A~x = ~b, i.e. that the system part could be condensed by making
use of matrix multiplication.

We can do the same thing here! The form will be a slightly different
than in the previous setting, because we are dealing with unknown functions
rathern than unknown variables, but all the previous intuition implies. We
can write the system (7) as

d~x

dt
= A~x (8)

where

d~x

dt
=


dx

dt
dy

dt

 , A =

[
a b
c d

]
, and ~x =

[
x
y

]
.

This form suggests immediately that the tools we developed from linear
algebra will be relevant for solving systems of differential equations. In fact,
this intuition is completely justified—we will see that we already have all of
the tools needed to completely solve systems of DEs of the form (8)!

Before we get there, however, let’s try to build some intuition. The first
order equation (8) is a vector/matrix equation, but it looks eerily similar to
the first order equation

dx

dt
= ax

which we know has solution x(t) = Ceat. The question then becomes, can we
extend our standard algebra result by substituting matrix algebra instead?
What are the terms going to be? Can we write eAt for a matrix A? (We
can, but won’t!) Is there some other way we can extend the solution x(t) to
the vector solution ~x(t)?

Consider the following set-up. We guess a solution ~x(t) with the general
exponential form eat, but we allow the components of ~x(t) to vary according
to a pre-defined vector. In other words, we write x(t) = ~veλt for some
λ ∈ R. This keeps the general intuition that the solution is exponential
while allowing us to extend to a vector form.

Now let’s check the matrix equation (8)! We have

d~x

dt
=

d

dt
[~veλt] = [λ~v]eλt
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and
A~x = A[~veλt] = [A~v]eλt.

It follows that we need

d~x

dt
= A~x =⇒ [λ~v]eλt = [A~v]eλt.

After dividing by eλt (which is never zero) and rearranging, we have

A~v = λ~v.

If you get the sense that we have seen this equation before, it is because
we have—but it previously had nothing to do with differential equations
at all. This is the eigenvalue/eigenvector equation for the matrix A, the
equation which told us the invariant directions of A treated as a linear
transformation. Now it tells us something different: it tells us that eigenval-
ues λi and eigenvectors ~vi, i = 1, . . . , n, give us solutions to (8) of the form
~xi(t) = ~vie

λit.
Reconsider the example x′ = −x+ 3y and y′ = 3x− y, we have

d~x

dt
= A~x, with A =

[
−1 3
3 −1

]
.

We can quickly compute that the eigenvalues are given by (−1 − λ)(−1 −
λ)− 9 = λ2 + 2λ− 8 = (λ+ 4)(λ− 2) = 0 so that λ1 = −4 and λ2 = 2. The
corresponding eigenvectors are ~v1 = (1,−1) and ~v2 = (1, 1). It follows that
we have two solutions of the form ~x1(t) = ~v1e

λ1t and ~x2(t) = ~v2e
λ2t. In fact,

we can take any linear combination of these solutions. The general solution
is [

x(t)
y(t)

]
= C1

[
1
−1

]
e−4t + C2

[
1
1

]
e2t.

Remarkably, knowing how to compute eigenvalues and eigenvectors com-
pletely solves the problem! We also get to complete our earlier picture.
Since C1(1,−1)e−4t → 0 as t → ∞, we have that the solution gets closer
to C2(1, 1)e2t as time goes on. In other words, solution approach the line
spanned by (1, 1). This is where the arrows were points in the picture in
Figure 1(a).

Of course, things are not always quite so easy. Ignoring some subtleties,
there are three basic cases for eigenvalues: distinct real eigenvalues, repeated
eigenvalues, and complex eigenvalues. The solution forms for the latter
two cases, of course, are different for the repeated eigenvalue and complex
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eigenvalue cases. But we have already how they come about! If we have a
repeated eigenvalue, without a spanning set of eigenvectors, then we do not
get a full set of linearly independent solutions to the system—but we have
already seen how to generate linear independent solutions for repeated roots.
Similarly, complex eigenvalues λ = α± βi lead to two linearly independent
solutions involving eαt sin(βt) and eαt cos(βt).

In any case, the solution for the 2× 2 differential equation cases can be
completely determined by the eigenvalues and eigenvectors in the following
way:

1. Two real distinct eigenvalues (or a repeated eigenvalue with
two distinct eigenvectors) - If we have two distinct eigenvalues λ1
and λ2 corresponding to ~v1 and ~v2, respectively, the solution to (8) is
given by

~x(t) = C1~v1e
λ1t + C2~v2e

λ2t.

Similarly, if there is a repeated eigenvalue (λ = λ1 = λ2) but two
linearly independent eigenvectors ~v1 and ~v2, we have

~x(t) = eλt (C1~v1 + C2~v2) .

2. Repeated eigenvalue, one eigenvector - If we have a repeated
eigenvalue λ = λ1 = λ2 but only one eigenvector ~v, we have the
general solution

~x(t) = (C1~v + C2(t~v + ~w))eλt

where ~w ∈ R2 is a generalized eigenvector satisfying

(A− λI)~w = ~v.

3. Complex eigenvalues - If we have a complex eigenvalue λ = α+ iβ
corresponding to a complex eigenvector ~v = ~a + i~b then the general
solution is given by

~x(t) = C1e
αt
(
~a cos(βt)−~b sin(βt)

)
+ C2e

αt
(
~a sin(βt) +~b cos(βt)

)
.

There are a few notes worth making about these solutions:
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1. It is clear that exponentials factor very heavily in the solutions of lin-
ear systems of differential equations. We also notice that, in terms of
limiting behavior, these exponentials dominate the behavior (i.e. they
asymptotically overwhelm the factor t in case (2), and the trigono-
metric functions in (3)). That is to say, the long-term behavior is
determined by the exponentials, so that trajectories tend to decay
(i.e. approach (0, 0)) if Re(λ) < 0 and blow up (i.e. go away from
(0, 0)) if Re(λ) > 0.

2. The case when λ = 0 is somewhat special, but it is worth noting
that the solution forms for case (1) and (2) still hold, but that the
exponential becomes one.

Example 1: Determine the solution of

dx

dt
= −x+ 3y, x(0) = 1

dy

dt
= 3x− y, y(0) = 1.

We have already determined that the general solution is[
x(t)
y(t)

]
= C1

[
−1
1

]
e−4t + C2

[
1
1

]
e2t.

It remains to use the initial conditions to solve for C1 and C2. We have
that x(0) = 1 and y(0) = 1 so that at t = 0 we have[

1
1

]
= C1

[
−1
1

]
+ C2

[
1
1

]
.

We can rewrite this as

−C1 + C2 = 1

C1 + C2 = 1

or, equivalently, [
−1 1
1 1

] [
C1

C2

]
=

[
1
1

]
.

We can easily row-reduce this to get[
−1 1 1
1 1 1

]
∼
[

1 0 0
0 1 1

]
.
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It follows that C1 = 0 and C2 = 1 so that the particular solution is[
x(t)
y(t)

]
=

[
1
1

]
e2t.

Example 2: Determine the solution of

dx

dt
= −x+ 5y, x(0) = 1

dy

dt
= −2x+ y, y(0) = 1.

To find the eigenvalues, we realize

A =

[
−1 5
−2 1

]
, so A− λI =

[
−1− λ 5
−2 1− λ

]
.

The characteristic polynomial is given by

(−1− λ)(1− λ) + 10 = λ2 + 9 = 0.

It follows that λ = ±3i. We need to find the eigenvectors corresponding to
these values. We have

(A− (3i)I) =

[
−1− 3i 5
−2 1− 3i

]
.

To find the nullspace, we row reduce to get[
−1− 3i 5 0
−2 1− 3i 0

]
(−1+3i)R1−→

[
(−1− 3i)(−1 + 3i) 5(−1 + 3i) 0

−2 1− 3i 0

]

−→
[

10 −5 + 15i 0
−2 1− 3i 0

]
−→

[
1 −1

2 + 3
2 i 0

0 0 0

]
so that ~v = (1− 3i, 2). We rewrite this as

~v =

[
1− 3i

2

]
=

[
1
2

]
+ i

[
−3
0

]
.

We set α = Re(λ) = 0 and β = Im(λ) = 3 and ~a = Re(~v) = (1, 2) and
~b = Im(~v) = (−3, 0). It follows that the general solution is

~x(t) = C1

([
1
2

]
cos(3t)−

[
−3
0

]
sin(3t)

)
+ C2

([
1
2

]
sin(3t) +

[
−3
0

]
cos(3t)

)
.
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To solve for C1 and C2, we utilize the initial conditions x(0) = 1 and
y(0) = 1. At t = 0 we have[

1
1

]
= C1

[
1
2

]
+ C2

[
−3
0

]
so that we have [

1 −3
2 0

] [
C1

C2

]
=

[
1
1

]
.

It follows immediately that C1 = 1/2 and C2 = −1/6 so we have

~x(t) =
1

2

([
1
2

]
cos(3t)−

[
−3
0

]
sin(3t)

)
− 1

6

([
1
2

]
sin(3t) +

[
−3
0

]
cos(3t)

)
=

[
1
1

]
cos(3t) +

1

3

[
4
−1

]
sin(3t)

Example 3: Determine the solution of

dx

dt
= x− 4y, x(0) = −1

dy

dt
= x− 3y, y(0) = 2.

To find the eigenvalues, we realize

A =

[
1 −4
1 −3

]
, so A− λI =

[
1− λ −4

1 −3− λ

]
.

The characteristic polynomial is given by

(1− λ)(−3− λ) + 4 = λ2 + 2λ+ 1 = (λ+ 1)2 = 0

so that λ = −1 is a repeated eigenvector. To check for the eigenvector(s)
corresponding to this value, we have

(A− (−1)I) =

[
2 −4
1 −2

]
.

To find the nullspace, we row reduce to get[
2 −4 0
1 −2 0

]
−→

[
1 −2 0
0 0 0

]
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so that ~v = (2, 1). We notice that we have not obtained two linear indepen-
dent eigenvectors, so that we need to look for a generalized eigenvector ~w.
We have

(A− λI)~w = ~v =⇒
[

2 −4 2
1 −2 1

]
∼
[

1 −2 1
0 0 0

]
.

If we set w2 = t, we see that w1 = 1 + 2t so that we have[
w1

w2

]
=

[
1 + 2t
t

]
=

[
1
0

]
+ t

[
2
1

]
.

Setting t = 0, we have ~w = (1, 0).
It follows that the general solution is given by

~x(t) =

(
C1

[
2
1

]
+ C2

(
t

[
2
1

]
+

[
1
0

]))
e−t

To solve for C1 and C2, we utilize the initial conditions x(0) = −1 and
y(0) = 2. At t = 0 we have[

−1
2

]
= C1

[
2
1

]
+ C2

[
1
0

]
which implies [

2 −1
1 0

] [
C1

C2

]
=

[
−1
2

]
so that we have [

2 1 −1
1 0 2

]
∼
[

1 0 2
0 1 −5

]
so that C1 = 2 and C2 = −5. It follows that the solution is

~x(t) =

(
2

[
2
1

]
− 5

(
t

[
2
1

]
+

[
1
0

]))
e−t

=

([
−1
2

]
− t
[

10
5

])
e−t

5 Phase Portrait

Now that we have a sense of what the solutions look like, we can construct a
much more detailed picture. In fact, we can completely enumerate the pos-
sible qualitatively different cases we found when we considered the analytic
solutions. We can break things apart something like this (for representative
pictures, see Figure 2):
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1. Two real distinct eigenvalues (or repeated eigenvalues with
two distinct eigenvectors)

(a) If both eigenvalues are positive (λ1 > 0 and λ2 > 0) we say (0, 0)
is an unstable node or source.

(b) If both eigenvalues are negative (λ1 < 0 and λ2 < 0) we say (0, 0)
is a stable node or sink.

(c) If the eigenvalues have opposite sign, we say (0, 0) is a saddle
point.

2. Repeated eigenvalue, one eigenvector

(a) If the repeated eigenvalue is positive (λ > 0) we say (0, 0) is a
degenerate source.

(b) If the repeated eigenvalue is negative (λ < 0) we say (0, 0) is a
degenerate sink.

3. Complex eigenvalues

(a) If the real part of the eigenvalue is positive (α > 0) we say (0, 0)
is an unstable spiral or source spiral.

(b) If the real part of the eigenvalue is negative (α < 0) we say (0, 0)
is a stable spiral or sink spiral.

(c) If the real part of the eigenvalue is zero (α = 0) we say (0, 0) is a
center.

4. Zero eigenvalue

(a) If there is a zero eigenvalue, we say that the system is degenerate
(there is a line of fixed points through (0, 0)).
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source sink saddle

degenerate source degenerate sink

spiral source spiral sink center

Figure 2: Canonical pictures for the various cases of two-dimensional linear
autonomous differential equations.
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