MATH 521, Spring 2014, Assignment 2 Due date: Wednesday, February 12

Problems for submission:

- 1. A real number is irrational if it cannot be written in the form a/b, $a, b \in \mathbb{Z}, b \neq 0$. The set of irrational numbers is given by $\mathbb{J} = \mathbb{R} \setminus \mathbb{Q}$.
 - (a) Prove that, if $p \in \mathbb{Q}$ and $q \in \mathbb{J}$ then $p + q \in \mathbb{J}$ and, if $p \neq 0$, $pq \in \mathbb{J}$.
 - (b) Prove that there is an irrational number $r \in \mathbb{J}$ in between any two rational numbers $p, q \in \mathbb{Q}$.
 - (c) Prove that the irrational numbers are uncountable. (**Hint:** Show that if A is an uncountable set and B is countably infinite then the set $A \setminus B$ is uncountable.)
 - (d) Do the irrational numbers form a field? Either prove the claim that do form a field or derive a contradiction.
- 2. Prove that if S is a countably infinite set then the power set $\mathcal{P}(S)$ is an uncountable set.
- 3. Consider an ordered field \mathbb{F} with additive identity $0 \in \mathbb{F}$ and multiplicative identity $1 \in \mathbb{F}$. We define the *absolute value* of $x \in \mathbb{F}$ to be

$$|x| = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0. \end{cases}$$

Prove the following for any $x, y \in \mathbb{F}$:

- (a) $-x = (-1) \cdot x$.
- (b) $x + x = 2 \cdot x$ where $2 = (1 + 1) \in \mathbb{F}$.
- (c) $|x| \ge 0$ with |x| = 0 if and only if x = 0.
- (d) $|x+y| \le |x|+|y|$
- (e) $\max(x, y) = \frac{1}{2} \cdot (x + y + |x y|)$ where $(1/2) = 2^{-1}$
- (f) $\min(x, y) = \frac{1}{2} \cdot (x + y |x y|)$ where $(1/2) = 2^{-1}$

4. Suppose that X is an ordered set with the least-upper-bound property and that $S_n \subseteq X$, $n \in \mathbb{N}$, is a family of subsets which are bounded above by a common upper bound. Consider the set

$$S = \{ \sup(S_n) \mid n \in \mathbb{N} \}$$

- (a) Prove that $\sup(S_n) \leq \sup(S)$ for all $n \in \mathbb{N}$.
- (b) Is it possible for the inequality $\sup(S_n) < \sup(S)$ to be *strict* for all $n \in \mathbb{N}$ (i.e. that no supremum of S_n attains the global supremum of S)? Justify your answer.
- 5. Suppose $S \subseteq X$ where X is an ordered set. Either give an example of an S satisfying the given properties or prove that no such set may exist:
 - (a) S is bounded from above and below, and yet neither $\max(S)$ nor $\min(S)$ exist.
 - (b) $\min(S)$ and $\max(S)$ exist and $\max(S) = \min(S)$.
 - (c) $\min(S)$, $\max(S)$, $\inf(S)$, and $\sup(S)$ exist and $\inf(S) < \min(S) < \max(S) < \sup(S)$.
- 6. Chapter #1, Question #5 in Rudin.
- 7. Chapter #1, Question #8 in Rudin.

Honors Question Chapter #1, Question #9 in Rudin.