MATH 521, Spring 2014, Assignment 2

Due date: Wednesday, February 12

Problems for submission:

1. A real number is irrational if it cannot be written in the form a / b, $a, b \in \mathbb{Z}, b \neq 0$. The set of irrational numbers is given by $\mathbb{J}=\mathbb{R} \backslash \mathbb{Q}$.
(a) Prove that, if $p \in \mathbb{Q}$ and $q \in \mathbb{J}$ then $p+q \in \mathbb{J}$ and, if $p \neq 0$, $p q \in \mathbb{J}$.
(b) Prove that there is an irrational number $r \in \mathbb{J}$ in between any two rational numbers $p, q \in \mathbb{Q}$.
(c) Prove that the irrational numbers are uncountable. (Hint: Show that if A is an uncountable set and B is countably infinite then the set $A \backslash B$ is uncountable.)
(d) Do the irrational numbers form a field? Either prove the claim that do form a field or derive a contradiction.
2. Prove that if S is a countably infinite set then the power set $\mathcal{P}(S)$ is an uncountable set.
3. Consider an ordered field \mathbb{F} with additive identity $0 \in \mathbb{F}$ and multiplicative identity $1 \in \mathbb{F}$. We define the absolute value of $x \in \mathbb{F}$ to be

$$
|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{cases}
$$

Prove the following for any $x, y \in \mathbb{F}$:
(a) $-x=(-1) \cdot x$.
(b) $x+x=2 \cdot x$ where $2=(1+1) \in \mathbb{F}$.
(c) $|x| \geq 0$ with $|x|=0$ if and only if $x=0$.
(d) $|x+y| \leq|x|+|y|$
(e) $\max (x, y)=\frac{1}{2} \cdot(x+y+|x-y|)$ where $(1 / 2)=2^{-1}$
(f) $\min (x, y)=\frac{1}{2} \cdot(x+y-|x-y|)$ where $(1 / 2)=2^{-1}$
4. Suppose that X is an ordered set with the least-upper-bound property and that $S_{n} \subseteq X, n \in \mathbb{N}$, is a family of subsets which are bounded above by a common upper bound. Consider the set

$$
S=\left\{\sup \left(S_{n}\right) \mid n \in \mathbb{N}\right\} .
$$

(a) Prove that $\sup \left(S_{n}\right) \leq \sup (S)$ for all $n \in \mathbb{N}$.
(b) Is it possible for the inequality $\sup \left(S_{n}\right)<\sup (S)$ to be strict for all $n \in \mathbb{N}$ (i.e. that no supremum of S_{n} attains the global supremum of S)? Justify your answer.
5. Suppose $S \subseteq X$ where X is an ordered set. Either give an example of an S satisfying the given properties or prove that no such set may exist:
(a) S is bounded from above and below, and yet neither $\max (S)$ nor $\min (S)$ exist.
(b) $\min (S)$ and $\max (S)$ exist and $\max (S)=\min (S)$.
(c) $\min (S), \max (S), \inf (S)$, and $\sup (S)$ exist and $\inf (S)<\min (S)<$ $\max (S)<\sup (S)$.
6. Chapter \#1, Question \#5 in Rudin.
7. Chapter \#1, Question \#8 in Rudin.

Honors Question Chapter \#1, Question \#9 in Rudin.

