MATH 521, Spring 2014, Assignment 3

Due date: Wednesday, February 26 Monday, March 3

Problems for submission:

- 1. Prove that the following are metric spaces:
 - (a) (\mathbb{R}^n, d) where, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$d(\mathbf{x}, \mathbf{y}) = \begin{cases} 0, & \text{if } \mathbf{x} = \mathbf{y} \\ 1, & \text{otherwise.} \end{cases}$$

- (b) $(\mathbb{R}^n, d_{\infty})$ where $d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i=1,\dots,n} |x_i y_i|$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (c) $(\mathbb{R}^n, \tilde{d})$ where

$$\tilde{d}(\mathbf{x}, \mathbf{y}) = \frac{d(\mathbf{x}, \mathbf{y})}{1 + d(\mathbf{x}, \mathbf{y})}$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ where $d(\mathbf{x}, \mathbf{y})$ is any metric on \mathbb{R}^n . (**Hint:** Prove first of all that $b \ge a \ge 0$ implies that $\frac{b}{1+b} \ge \frac{a}{1+a}$!)

- 2. Consider the three metrics in Question #1 with \mathbb{R}^2 . Draw or describe the unit ball $B_1(\mathbf{0})$ around the point $\mathbf{0} = (0,0)$.
- 3. Consider the Hausdorff metric

$$d(I_1, I_2) = \max \left\{ \max_{x \in I_1} \min_{y \in I_2} |x - y|, \max_{y \in I_2} \min_{x \in I_1} |x - y| \right\}$$

on the space of intervals $I = \{[a, b] \mid a, b \in \mathbb{R}\}.$

- (a) Determine the distance between the following pairs of sets: (i) $I_1 = [0, 1]$ and $I_2 = [1, 2]$, (ii) $I_1 = [0, 1]$ and $I_2 = [-2, 2]$.
- (b) Prove that $d(I_1, I_2)$ satisfies the first two metric properties. (You do not need to prove the Δ -inequality!)
- 4. Consider the metric space (\mathbb{R}, d) with the metric d(x, y) = |x y|. For the following subsets $S \subseteq \mathbb{R}$, identify the sets S^o , S', ∂S , and \overline{S} . Also determine whether the sets S are open, closed, both, or neither.

- (a) $S = \{x \in \mathbb{R} \mid |x y| < r\}$ where r > 0 and $y \in \mathbb{R}$ is fixed.
- (b) $S = \left\{ \frac{1}{n} + \frac{1}{m} \in \mathbb{R} \mid n, m \in \mathbb{N} \right\}.$
- (c) $S = \{x \in \mathbb{R} \mid 0 < x < 1, x \text{ is irrational}\}.$
- 5. Suppose (X, d) is a metric space and $S \subseteq X$. Prove the following:
 - (a) S' is closed.
 - (b) $\overline{S} = S \cup \partial S$.
 - (c) $\overline{S^c} = (S^o)^c$
 - (d) $\partial S = \overline{S} \cap \overline{S^c}$
- 6. Suppose (X, d) is a metric space and $A, B \subseteq X$. Prove the following:
 - (a) $(A \cap B)^o = A^o \cap B^o$
 - (b) $(A \cup B)^o \supseteq A^o \cup B^o$
 - (c) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
 - (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (e) Find sets $A, B \subseteq \mathbb{R}$ such that the inclusions (b) and (c) are strict.
- **Honors Question #1** Consider a metric space (X, d) equipped with the discrete metric d(x, y) = 0 for x = y and d(x, y) = 1 for $x \neq y$.
 - (a) What are the open subsets $S \subseteq X$ in this topology? What are the closed sets? Justify your claims.
 - (b) Is X connected? Why or why not.

Honors Question #2 Is it true that $S^o = (\overline{S})^o$? Either prove the claim that it is true or find a counter-example.