MATH 521, Spring 2014, Assignment 3
 Due date: Wednesday, February 26 Monday, March 3

Problems for submission:

1. Prove that the following are metric spaces:
(a) $\left(\mathbb{R}^{n}, d\right)$ where, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$,

$$
d(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{lc}
0, & \text { if } \mathbf{x}=\mathbf{y} \\
1, & \text { otherwise }
\end{array}\right.
$$

(b) $\left(\mathbb{R}^{n}, d_{\infty}\right)$ where $d_{\infty}(\mathbf{x}, \mathbf{y})=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
(c) $\left(\mathbb{R}^{n}, \tilde{d}\right)$ where

$$
\tilde{d}(\mathbf{x}, \mathbf{y})=\frac{d(\mathbf{x}, \mathbf{y})}{1+d(\mathbf{x}, \mathbf{y})}
$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ where $d(\mathbf{x}, \mathbf{y})$ is any metric on \mathbb{R}^{n}. (Hint: Prove first of all that $b \geq a \geq 0$ implies that $\frac{b}{1+b} \geq \frac{a}{1+a}$!)
2. Consider the three metrics in Question $\# 1$ with \mathbb{R}^{2}. Draw or describe the unit ball $B_{1}(\mathbf{0})$ around the point $\mathbf{0}=(0,0)$.
3. Consider the Hausdorff metric

$$
d\left(I_{1}, I_{2}\right)=\max \left\{\max _{x \in I_{1}} \min _{y \in I_{2}}|x-y|, \max _{y \in I_{2}} \min _{x \in I_{1}}|x-y|\right\}
$$

on the space of intervals $I=\{[a, b] \mid a, b \in \mathbb{R}\}$.
(a) Determine the distance between the following pairs of sets:
(i) $I_{1}=[0,1]$ and $I_{2}=[1,2]$, (ii) $I_{1}=[0,1]$ and $I_{2}=[-2,2]$.
(b) Prove that $d\left(I_{1}, I_{2}\right)$ satisfies the first two metric properties. (You do not need to prove the Δ-inequality!)
4. Consider the metric space (\mathbb{R}, d) with the metric $d(x, y)=|x-y|$. For the following subsets $S \subseteq \mathbb{R}$, identify the sets $S^{o}, S^{\prime}, \partial S$, and \bar{S}. Also determine whether the sets S are open, closed, both, or neither.
(a) $S=\{x \in \mathbb{R}| | x-y \mid<r\}$ where $r>0$ and $y \in \mathbb{R}$ is fixed.
(b) $S=\left\{\left.\frac{1}{n}+\frac{1}{m} \in \mathbb{R} \right\rvert\, n, m \in \mathbb{N}\right\}$.
(c) $S=\{x \in \mathbb{R} \mid 0<x<1, x$ is irrational $\}$.
5. Suppose (X, d) is a metric space and $S \subseteq X$. Prove the following:
(a) S^{\prime} is closed.
(b) $\bar{S}=S \cup \partial S$.
(c) $\overline{S^{c}}=\left(S^{o}\right)^{c}$
(d) $\partial S=\bar{S} \cap \overline{S^{c}}$
6. Suppose (X, d) is a metric space and $A, B \subseteq X$. Prove the following:
(a) $(A \cap B)^{o}=A^{o} \cap B^{o}$
(b) $(A \cup B)^{o} \supseteq A^{o} \cup B^{o}$
(c) $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$
(d) $\overline{A \cup B}=\bar{A} \cup \bar{B}$
(e) Find sets $A, B \subseteq \mathbb{R}$ such that the inclusions (b) and (c) are strict.

Honors Question \#1 Consider a metric space (X, d) equipped with the discrete metric $d(x, y)=$ 0 for $x=y$ and $d(x, y)=1$ for $x \neq y$.
(a) What are the open subsets $S \subseteq X$ in this topology? What are the closed sets? Justify your claims.
(b) Is X connected? Why or why not.

Honors Question \#2 Is it true that $S^{o}=(\bar{S})^{o}$? Either prove the claim that it is true or find a counter-example.

