MATH 521, Spring 2014, Assignment 4 Due date: Friday, March 14

Problems for submission:

- 1. Suppose (X, d) is a metric space. Prove that the following statements are equivalent:
 - (a) X is connected;
 - (b) the only subsets $S \subseteq X$ which are both open and closed are S = X and $S = \emptyset$; and
 - (c) ∂S is nonempty for every $S \subseteq X$ other than S = X and $S = \emptyset$.
- 2. Consider the metric space (\mathbb{R}, d) with d(x, y) = |x y|. We will say that $I \subseteq \mathbb{R}$ is an *interval* if I is nonempty and, for every $x, y \in I$, and every z such that x < z < y, we have that $z \in I$.
 - (a) Prove that the only connected subsets of \mathbb{R} are intervals. (Note: Prove that intervals are connected as part of the argument!)
 - (b) Prove that if $A, B \subseteq \mathbb{R}$ are connected and $A \cap B$ is nonempty, then $A \cap B$ is connected.
 - (c) Prove that if $S \subseteq \mathbb{R}$ is connected then S^o is connected.
 - (d) Show that (b) and (c) do not hold if we consider (\mathbb{R}^2, d_2) where d_2 is the standard Euclidean metric.
- 3. Consider the metric space (\mathbb{R}, d) with d(x, y) = |x y|. Show that the following sets are not compact by finding an open cover which does not have a finite subcover.

(a)
$$A = \{x \in \mathbb{R} \mid 0 < x \le 1\}$$

(b) $B = \left\{\frac{1}{n} - \frac{1}{m} \mid n, m \in \mathbb{N}\right\}$
(c) $C = \{x \in \mathbb{Q} \mid 0 \le x \le 1\}$

4. Prove that the set

$$S = \left\{ \left. \frac{1}{n} \right| \ n \in \mathbb{N} \right\} \cup \{0\}$$

is compact directly from the definition (i.e. do not use the Heine-Borel Theorem).

- 5. Suppose (X, d) is a metric space. Prove the following:
 - (a) If $\{S_n\}_{n=1,\dots,N}$ is a family of compact sets such that $S_n \subseteq X$ for all $n = 1, \dots, N$, then $\bigcup_{n=1}^N S_n$ is compact.
 - (b) If $\{S_{\alpha}\}_{\alpha \in A}$ is a family of compact sets such that $S_n \subseteq X$ for all $\alpha \in A$, then $\bigcap_{\alpha \in A} S_{\alpha}$ is compact. (**Hint:** You may use the fact that compact sets are closed and that an arbitrary intersection of closed sets is closed. Also note this intersection may be empty.)
- 6. Let $S \subseteq X$ be a closed subset of a metric space (X, d). A family of sets $\{S_{\alpha}\}$ such that $S_{\alpha} \subseteq S$ for all $\alpha \in A$ is said to have the *finite intersection property* if every finite subfamily $\{S_{\alpha_i}\}, i \in \{1, \ldots, N\}$, of $\{S_{\alpha}\}$ has the property

$$\bigcap_{i \in \{1, \dots, N\}} S_{\alpha_i} \neq \emptyset$$

Suppose that every family $\{S_{\alpha}\}, \alpha \in A$, of *closed* subsets of S which has the finite intersection property also satisfies

$$\bigcap_{\alpha \in A} S_{\alpha} \neq \emptyset.$$

Prove that S is compact.

- **Honors Question #1** Suppose (X, d) is a metric space and $S \subseteq X$ is a connected subset with more than one element. Show the following:
 - (a) Every point of S is a limit point.
 - (b) S is uncountable.