MATH 521, Spring 2014, Assignment 4 Due date: Friday, March 14

Problems for submission:

1. Suppose (X, d) is a metric space. Prove that the following statements are equivalent:
(a) X is connected;
(b) the only subsets $S \subseteq X$ which are both open and closed are $S=X$ and $S=\emptyset$; and
(c) ∂S is nonempty for every $S \subseteq X$ other than $S=X$ and $S=\emptyset$.
2. Consider the metric space (\mathbb{R}, d) with $d(x, y)=|x-y|$. We will say that $I \subseteq \mathbb{R}$ is an interval if I is nonempty and, for every $x, y \in I$, and every z such that $x<z<y$, we have that $z \in I$.
(a) Prove that the only connected subsets of \mathbb{R} are intervals. (Note: Prove that intervals are connected as part of the argument!)
(b) Prove that if $A, B \subseteq \mathbb{R}$ are connected and $A \cap B$ is nonempty, then $A \cap B$ is connected.
(c) Prove that if $S \subseteq \mathbb{R}$ is connected then S^{o} is connected.
(d) Show that (b) and (c) do not hold if we consider $\left(\mathbb{R}^{2}, d_{2}\right)$ where d_{2} is the standard Euclidean metric.
3. Consider the metric space (\mathbb{R}, d) with $d(x, y)=|x-y|$. Show that the following sets are not compact by finding an open cover which does not have a finite subcover.
(a) $A=\{x \in \mathbb{R} \mid 0<x \leq 1\}$
(b) $B=\left\{\left.\frac{1}{n}-\frac{1}{m} \right\rvert\, n, m \in \mathbb{N}\right\}$
(c) $C=\{x \in \mathbb{Q} \mid 0 \leq x \leq 1\}$
4. Prove that the set

$$
S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\}
$$

is compact directly from the definition (i.e. do not use the Heine-Borel Theorem).
5. Suppose (X, d) is a metric space. Prove the following:
(a) If $\left\{S_{n}\right\}_{n=1, \ldots, N}$ is a family of compact sets such that $S_{n} \subseteq X$ for all $n=1, \ldots, N$, then $\bigcup_{n=1}^{N} S_{n}$ is compact.
(b) If $\left\{S_{\alpha}\right\}_{\alpha \in A}$ is a family of compact sets such that $S_{n} \subseteq X$ for all $\alpha \in A$, then $\bigcap_{\alpha \in A} S_{\alpha}$ is compact. (Hint: You may use the fact that compact sets are closed and that an arbitrary intersection of closed sets is closed. Also note this intersection may be empty.)
6. Let $S \subseteq X$ be a closed subset of a metric space (X, d). A family of sets $\left\{S_{\alpha}\right\}$ such that $S_{\alpha} \subseteq S$ for all $\alpha \in A$ is said to have the finite intersection property if every finite subfamily $\left\{S_{\alpha_{i}}\right\}, i \in\{1, \ldots, N\}$, of $\left\{S_{\alpha}\right\}$ has the property

$$
\bigcap_{i \in\{1, \ldots, N\}} S_{\alpha_{i}} \neq \emptyset
$$

Suppose that every family $\left\{S_{\alpha}\right\}, \alpha \in A$, of closed subsets of S which has the finite intersection property also satisfies

$$
\bigcap_{\alpha \in A} S_{\alpha} \neq \emptyset
$$

Prove that S is compact.
Honors Question \#1 Suppose (X, d) is a metric space and $S \subseteq X$ is a connected subset with more than one element. Show the following:
(a) Every point of S is a limit point.
(b) S is uncountable.

