MATH 521, Spring 2014, Assignment 5 Due date: Wednesday, April 2

Problems for submission:

1. Use the definition of the limit to prove that the sequences $\left\{a_{n}\right\}$ with the given terms converge to the indicated limits:
(a) $a_{n}=\frac{n^{2}}{2 n^{2}+n-1}, L=1 / 2$
(b) $a_{n}=\sqrt{n^{2}+n}-n, L=1 / 2$
2. Consider a sequence $\left\{a_{n}\right\} \subset \mathbb{R}$ which is recursively defined by

$$
\begin{equation*}
a_{n+1}=f\left(a_{n}\right) \tag{1}
\end{equation*}
$$

(a) Prove that if there is some $L \in \mathbb{R}$ and a $0 \leq c<1$ such that

$$
\left|\frac{a_{n+1}-L}{a_{n}-L}\right|<c
$$

for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n}=L$.
(b) Consider the sequence (1) with $f\left(a_{n}\right)=\frac{1-2 a_{n}}{3}$. Use the result of part (a) to show that $\left\{a_{n}\right\}$ converges to the limit $L=1 / 5$ regardless of the value of a_{1}. What is the value of c ?
(c) Consider the sequence (1) with $f\left(a_{n}\right)=1+\frac{1}{1+a_{n}}$ and $a_{1}=1$. Use the result of part (a) to show that $\left\{a_{n}\right\}$ converges to the limit $L=\sqrt{2}$. What is the value of c ? (Hint: first show that $1 \leq a_{n} \leq 2$ implies $1 \leq a_{n+1} \leq 2$, or some comparable bound.)
3. Consider the sequence $\left\{a_{n}\right\}$ where $a_{n+2}=a_{n+1}+a_{n}, n \in \mathbb{N}$.
(a) Consider the initial values $a_{1}=1$ and $a_{2}=1$. Explicitly determine up to the term a_{6} and then prove that the sequence diverges. (Hint: Show it is monotonically increasing but has no upper bound.)
(b) Consider the initial values $a_{1}=1$ and $a_{2}=\frac{1-\sqrt{5}}{2}$. Explicitly determine up to the term a_{6}. Then prove inductively that

$$
a_{n+1}=\left(\frac{1-\sqrt{5}}{2}\right) a_{n}
$$

and use this to prove that the sequence converges to the limit $L=0$.
4. Chapter \#3, Question \#20 in Rudin
5. Determine the limit inferior and limit superior of the following sequences (you do not need to rigorously prove the limits, but the limit values need to be exact):
(a) $a_{n}=(-1)^{n}\left(\frac{n+1}{n-1}\right) \arctan (n)$,
(b) $a_{n}=\sin \left((2 n-1) \frac{\pi}{2}+\frac{1}{n}\right)$
(c) $a_{2 n}=-\frac{1}{2} a_{2 n-1}, a_{2 n+1}=a_{2 n}+1, a_{1}=0$.
6. Consider a sequence of real numbers $\left\{a_{n}\right\}$ which is bounded. Define the set S to be the set of all subsequential limits of $\left\{a_{n}\right\}$.
(a) Prove that $s \in S$ if and only if, for every $\epsilon>0$ and every $N \in \mathbb{N}$ there is an $n>N$ so that $\left|a_{n}-s\right|<\epsilon$.
(b) Define $S^{*}=\sup (S)$. Prove that $\alpha \in \mathbb{R}$ satisfies the following two conditions if and only if $\alpha=S^{*}$:
(i) For every $\epsilon>0$, there exists an $n \in \mathbb{N}$ so that $m>n$ implies that $a_{m}<\alpha+\epsilon$;
(ii) For every $\epsilon>0$ and every $n \in \mathbb{N}$, there exists an $m>n$ so that $a_{m}>\alpha-\epsilon$.
(c) Honors only! Define the limit superior of $\left\{a_{n}\right\}$ as in class:

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\sup _{m>n} a_{n}\right) .
$$

Prove that $S^{*}=\limsup _{n \rightarrow \infty} a_{n}$. (Hint: Use part (b)!)
Honors Question Chapter \#3, Question \#23 in Rudin

