MATH 521, Spring 2014, Assignment 5 Due date: Wednesday, April 2

Problems for submission:

1. Use the definition of the limit to prove that the sequences $\{a_n\}$ with the given terms converge to the indicated limits:

(a)
$$a_n = \frac{n^2}{2n^2 + n - 1}, L = 1/2$$

(b) $a_n = \sqrt{n^2 + n} - n, L = 1/2$

2. Consider a sequence $\{a_n\} \subset \mathbb{R}$ which is recursively defined by

$$a_{n+1} = f(a_n). \tag{1}$$

(a) Prove that if there is some $L \in \mathbb{R}$ and a $0 \le c < 1$ such that

$$\left|\frac{a_{n+1} - L}{a_n - L}\right| < c$$

for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} a_n = L$.

- (b) Consider the sequence (1) with $f(a_n) = \frac{1-2a_n}{3}$. Use the result of part (a) to show that $\{a_n\}$ converges to the limit L = 1/5 regardless of the value of a_1 . What is the value of c?
- (c) Consider the sequence (1) with $f(a_n) = 1 + \frac{1}{1+a_n}$ and $a_1 = 1$. Use the result of part (a) to show that $\{a_n\}$ converges to the limit $L = \sqrt{2}$. What is the value of c? (Hint: first show that $1 \le a_n \le 2$ implies $1 \le a_{n+1} \le 2$, or some comparable bound.)
- 3. Consider the sequence $\{a_n\}$ where $a_{n+2} = a_{n+1} + a_n, n \in \mathbb{N}$.
 - (a) Consider the initial values $a_1 = 1$ and $a_2 = 1$. Explicitly determine up to the term a_6 and then prove that the sequence diverges. (Hint: Show it is monotonically increasing but has no upper bound.)

(b) Consider the initial values $a_1 = 1$ and $a_2 = \frac{1-\sqrt{5}}{2}$. Explicitly determine up to the term a_6 . Then prove inductively that

$$a_{n+1} = \left(\frac{1-\sqrt{5}}{2}\right)a_n$$

and use this to prove that the sequence converges to the limit L = 0.

- 4. Chapter #3, Question #20 in Rudin
- 5. Determine the limit inferior and limit superior of the following sequences (you do not need to rigorously prove the limits, but the limit values need to be exact):

(a)
$$a_n = (-1)^n \left(\frac{n+1}{n-1}\right) \arctan(n)$$
, (b) $a_n = \sin\left((2n-1)\frac{\pi}{2} + \frac{1}{n}\right)$
(c) $a_{2n} = -\frac{1}{2}a_{2n-1}, a_{2n+1} = a_{2n} + 1, a_1 = 0.$

- 6. Consider a sequence of real numbers $\{a_n\}$ which is bounded. Define the set S to be the set of all subsequential limits of $\{a_n\}$.
 - (a) Prove that $s \in S$ if and only if, for every $\epsilon > 0$ and every $N \in \mathbb{N}$ there is an n > N so that $|a_n s| < \epsilon$.
 - (b) Define $S^* = \sup(S)$. Prove that $\alpha \in \mathbb{R}$ satisfies the following two conditions if and only if $\alpha = S^*$:
 - (i) For every $\epsilon > 0$, there exists an $n \in \mathbb{N}$ so that m > n implies that $a_m < \alpha + \epsilon$;
 - (ii) For every $\epsilon > 0$ and every $n \in \mathbb{N}$, there exists an m > n so that $a_m > \alpha \epsilon$.
 - (c) Honors only! Define the limit superior of $\{a_n\}$ as in class:

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sup_{m > n} a_n \right).$$

Prove that $S^* = \limsup_{n \to \infty} a_n$. (Hint: Use part (b)!)

Honors Question Chapter #3, Question #23 in Rudin