MATH 521, Spring 2014, Assignment 8 Due date: Monday, May 5

Submit only the starred (*) questions! (Honors students submit the Honors Question as well.)

1.* Suppose $f:[a, b] \mapsto \mathbb{R}$ is bounded on $[a, b]$. Prove that if f is Riemann integrable on $[a, b]$ then the function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is uniformly continuous on $[a, b]$.
2. Suppose $f:[0,2] \mapsto \mathbb{R}$ is continuous on $[0,2]$, and that $\int_{0}^{2} f(t) d t=2$. Show that there is a $c \in(0,2)$ such that $f(c)=c$. [Hint: Consider the function $F(x)=\int_{0}^{x}(f(t)-t) d t$ and apply the FTC.)
3.* Use the definition of Riemann integrability, or an equivalent formulation, to prove that

$$
\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right) .
$$

4. Suppose that $f, g:[a, b] \mapsto \mathbb{R}$ are Riemann integrable on $[a, b]$. Define the following:

$$
\begin{aligned}
& \|f\|_{2}=\sqrt{\int_{a}^{b} f(x)^{2} d x} \\
& \langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
\end{aligned}
$$

(There are the basis for the L^{2} metric space on functions. Note that the objects in this space are functions, rather than vectors as they were in \mathbb{R}^{n}. Nevertheless, we can see immediate parallels with the Euclidean norm $\|\cdot\|_{2}$ and dot product which is often written in inner product notation $\langle\cdot, \cdot\rangle$.)
(a) Prove directly that, if $f(x)$ is Riemann integrable on $[a, b]$, then $f(x)^{2}$ is Riemann integrable on $[a, b]$. (This guarantees that we may evaluate $\|f\|_{2}$.)
(b)* Compute $\left\|f_{n}\right\|_{2}, n \in \mathbb{N}$, for the family of functions

$$
f_{n}(x)= \begin{cases}1+n x, & \text { for }-1 / n<x \leq 0 \\ 1-n x, & \text { for } 0<x \leq 1 / n \\ 0, & \text { otherwise }\end{cases}
$$

on the interval $[-1,1]$. What happens as $n \rightarrow \infty$? Does this make sense in the context of the individual functions $f_{n}(x)$? Are there are peculiarities? (Note: The norm is a measure of "distance" of a function from the trivial "zero function" $f(x)=0$.)
(c)* Prove that $|\langle f, g\rangle| \leq\|f\|_{2} \cdot\|g\|_{2}$. Hint: It will help to look back at the proof of the Cauchy-Schwarz Inequality contained in the Week 4 notes. Consider starting with the identity

$$
\int_{a}^{b} \int_{a}^{b}(f(x) g(y)-f(y) g(x))^{2} d y d x \geq 0
$$

(d) Prove that $\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}$. (Hint: use (c)!)

Honors! Define the set $L_{2}([a, b])$ to be the set of all functions which are Riemann integrable on $[a, b]$. Define $d: L_{2}([a, b]) \times L_{2}([a, b]) \mapsto \mathbb{R}$ according to

$$
d(f, g)=\|f-g\|_{2} .
$$

Show that $d(f, g)$ satisfies all the metric space condition except $d(f, g)=0$ implies $f(x)=g(x)$. (There are subtleties with this final metric space condition which require some degree of measure theory to resolve.)

