MATH 521, Spring 2014, Assignment 8 Due date: Monday, May 5

Submit only the starred (*) questions! (Honors students submit the Honors Question as well.)

1.* Suppose $f : [a, b] \mapsto \mathbb{R}$ is bounded on [a, b]. Prove that if f is Riemann integrable on [a, b] then the function

$$F(x) = \int_{a}^{x} f(t) dt$$

is uniformly continuous on [a, b].

- 2. Suppose $f: [0,2] \mapsto \mathbb{R}$ is continuous on [0,2], and that $\int_0^2 f(t) dt = 2$. Show that there is a $c \in (0,2)$ such that f(c) = c. [Hint: Consider the function $F(x) = \int_0^x (f(t) - t) dt$ and apply the FTC.)
- 3.* Use the definition of Riemann integrability, or an equivalent formulation, to prove that

$$\int_{a}^{b} x \, dx = \frac{1}{2} \left(b^2 - a^2 \right).$$

4. Suppose that $f, g : [a, b] \mapsto \mathbb{R}$ are Riemann integrable on [a, b]. Define the following:

$$||f||_2 = \sqrt{\int_a^b f(x)^2 dx}$$
$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$

(There are the basis for the L^2 metric space on *functions*. Note that the objects in this space are functions, rather than vectors as they were in \mathbb{R}^n . Nevertheless, we can see immediate parallels with the Euclidean norm $\|\cdot\|_2$ and dot product which is often written in inner product notation $\langle \cdot, \cdot \rangle$.)

(a) Prove directly that, if f(x) is Riemann integrable on [a, b], then $f(x)^2$ is Riemann integrable on [a, b]. (This guarantees that we may evaluate $||f||_2$.)

(b)* Compute $||f_n||_2$, $n \in \mathbb{N}$, for the family of functions

$$f_n(x) = \begin{cases} 1 + nx, & \text{for } -1/n < x \le 0\\ 1 - nx, & \text{for } 0 < x \le 1/n\\ 0, & \text{otherwise} \end{cases}$$

on the interval [-1, 1]. What happens as $n \to \infty$? Does this make sense in the context of the individual functions $f_n(x)$? Are there are peculiarities? (Note: The norm is a measure of "distance" of a function from the trivial "zero function" f(x) = 0.)

(c)* Prove that $|\langle f,g\rangle| \leq ||f||_2 \cdot ||g||_2$. Hint: It will help to look back at the proof of the Cauchy-Schwarz Inequality contained in the Week 4 notes. Consider starting with the identity

$$\int_{a}^{b} \int_{a}^{b} (f(x)g(y) - f(y)g(x))^{2} \, dy \, dx \ge 0.$$

(d) Prove that $||f + g||_2 \le ||f||_2 + ||g||_2$. (Hint: use (c)!)

Honors! Define the set $L_2([a, b])$ to be the set of all functions which are Riemann integrable on [a, b]. Define $d: L_2([a, b]) \times L_2([a, b]) \mapsto \mathbb{R}$ according to

$$d(f,g) = \|f - g\|_2.$$

Show that d(f,g) satisfies all the metric space condition *except* d(f,g) = 0 implies f(x) = g(x). (There are subtleties with this final metric space condition which require some degree of measure theory to resolve.)