Math 521, Spring 2014, Term Test I Analysis I

Date: Friday, February 21 Time: 9:55-10:45 a.m. Lecture Section: 001

Name (printed):

UW Student ID Number:

Instructions

- 1. Fill out this cover page.
- 2. Answer questions in the space provided, using back page for overflow and rough work.
- 3. Show all work required to obtain your answers.
- 4. Unless otherwise stated, you may use any theorem or result derived in class.

FOR EXAMINERS' USE ONLY	
Page	Mark
2	/6
3	/5
4	/5
5	/4
Total	/20

- [3] 1. <u>Definitions:</u>
 - (a) Let P and Q be statements which have a truth value and suppose that $P \Longrightarrow Q$. State the *contrapositive*.
 - (b) Suppose X is an ordered set and $S \subseteq X$ is nonempty and bounded below. Define what it means for $\alpha = \inf(A)$.
 - (c) State the multiplication axioms for a set \mathbb{F} to be a field.

- [3] 2. True/False:
 - (a) The converse of a statement $P \Longrightarrow Q$ is never true. [True / False]
 - (b) For any element $x \in \mathbb{F}, x \neq 0$, in any field \mathbb{F} , the multiplicative inverse x^{-1} is unique. [True / False]
 - (c) Suppose S is a finite set. Then $\mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$ is a finite set. [True / False]

[3] 3. <u>Set Proofs</u> (Note: Venn diagrams are a helpful aid but do not constitute a proof!) Let A and B be sets. Prove that $A \cup B \subseteq A \cap B \Longrightarrow A = B$.

[2] 4. <u>Ordered Sets</u>

Suppose X is an ordered set and $S \subseteq X$ is bounded above. Prove that if $\sup(S)$ exists, it is *unique*. (i.e. Prove that $\alpha = \sup(S)$ and $\beta = \sup(S)$ implies $\alpha = \beta$.)

[5] 5. $\underline{\text{Fields}}$

Let \mathbb{F} denote a field. Suppose $x, y, z \in \mathbb{F}$. Using the field axioms and any field result from class other than the one stated, prove the following (you may use each result you prove thereafter, if applicable):

(a) $x \cdot y = 0$ implies that x = 0 or y = 0

(b) (Difference of squares) $x^2 - y^2 = (x + y) \cdot (x - y)$

(where $x^2 = x \cdot x$ and x - y = x + (-y))

(c)
$$x^2 = y^2$$
 implies $x = y$ or $x = -y$ (Hint: Consider parts (a) and (b)!)

[4] 6. Countability

Let $\overline{\mathbb{C}}$ denote the set of all values x = a + bi where $a, b \in \mathbb{Q}$, $\sqrt{a^2 + b^2} \le 1$, and $i = \sqrt{-1}$. Is $\overline{\mathbb{C}}$ countable or uncountable? Prove your claim.

THIS PAGE IS FOR ROUGH WORK