Math 521, Spring 2014, Term Test I Analysis I

Date: Friday, February 21 Time: 12:05-12:55 p.m. Lecture Section: 002

Name (printed):	
UW Student ID Number:	

Instructions

- 1. Fill out this cover page.
- 2. Answer questions in the space provided, using back page for overflow and rough work.
- 3. Show all work required to obtain your answers.
- 4. Unless otherwise stated, you may use any theorem or result derived in class.

FOR EXAMINERS' USE ONLY				
Page	Mark			
2	/6			
3	/5			
4	/5			
5	/4			
Total	/20			

[3] 1. <u>Definitions:</u>

- (a) Let P and Q be statements which have a truth value and suppose that $P\Longrightarrow Q.$ State the contrapositive.
- (b) State what it means for an ordered set X to have the least-upper-bound property.
- (c) State the multiplication axioms for a set \mathbb{F} to be a field.

[3] 2. True/False:

- (a) The converse of a statement $P \Longrightarrow Q$ is never true. [True / False]
- (b) In any field \mathbb{F} , the additive identity $0 \in \mathbb{F}$ is unique. [True / False]
- (c) Suppose S is a finite set. Then $\mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$ is a finite set. [True / False]

[3] 3. Set Proofs (Note: Venn diagrams are a helpful aid but do not constitute a proof!) Let A and B be sets. Prove that $A \cup B \subseteq A \cap B \Longrightarrow A = B$.

[2] 4. Countability

Suppose $\{S_n\}$ is a countably infinite family of countably infinite sets $S_n, n \in \mathbb{N}$. Prove that

$$S = \bigcup_{n=1}^{\infty} S_n$$

is countably infinite.

[5] 5. <u>Fields</u>

Let \mathbb{F} denote a field. Suppose $x, y, z \in \mathbb{F}$. Using the field axioms and any field result from class other than the one stated, prove the following (you may use each result you prove thereafter, if applicable):

(a)
$$x \cdot y = 0$$
 implies that $x = 0$ or $y = 0$

(b) (Difference of squares)
$$x^2-y^2=(x+y)\cdot(x-y) \qquad \qquad (\text{where } x^2=x\cdot x \text{ and } x-y=x+(-y))$$

(c)
$$x^2 = y^2$$
 implies $x = y$ or $x = -y$ (Hint: Consider parts (a) and (b)!)

Math 521, Term Test I, Spring 20	14 Page 5 of 6	Name:	

[4] 6. Ordered Sets

Suppose that X is an ordered set and every nonempty $S \subseteq X$ which is bounded below has the property that $\inf(S) \in X$. Prove that X has the least-upper-bound property. (**Note:** You must prove this directly. You may not use the result derived from the least-upper-bound property obtained in class!)

Math 521, Term Test I, Spring 2014 Page 6 of 6 Name: ____

THIS PAGE IS FOR ROUGH WORK