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1. Definitions:[3]

(a) Let P and Q be statements which have a truth value and suppose that P =⇒ Q.
State the contrapositive.

(b) State what it means for an ordered set X to have the least-upper-bound property.

(c) State the multiplication axioms for a set F to be a field.

2. True/False:[3]

(a) The converse of a statement P =⇒ Q is never true. [True / False]

(b) In any field F, the additive identity 0 ∈ F is unique. [True / False]

(c) Suppose S is a finite set. Then P(P(P(S))) is a finite set. [True / False]
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3. Set Proofs (Note: Venn diagrams are a helpful aid but do not constitute a proof!)[3]

Let A and B be sets. Prove that A ∪B ⊆ A ∩B =⇒ A = B.

4. Countability[2]

Suppose {Sn} is a countably infinite family of countably infinite sets Sn, n ∈ N. Prove
that

S =
∞⋃
n=1

Sn

is countably infinite.
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5. Fields[5]

Let F denote a field. Suppose x, y, z ∈ F. Using the field axioms and any field result
from class other than the one stated, prove the following (you may use each result you
prove thereafter, if applicable):

(a) x · y = 0 implies that x = 0 or y = 0

(b) (Difference of squares)
x2 − y2 = (x + y) · (x− y) (where x2 = x · x and x− y = x + (−y))

(c) x2 = y2 implies x = y or x = −y (Hint: Consider parts (a) and (b)!)
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6. Ordered Sets[4]

Suppose that X is an ordered set and every nonempty S ⊆ X which is bounded below
has the property that inf(S) ∈ X. Prove that X has the least-upper-bound property.
(Note: You must prove this directly. You may not use the result derived from the
least-upper-bound property obtained in class!)
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THIS PAGE IS FOR ROUGH WORK
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