MATH 521, WEEKS 4 & 5:
Metric Spaces, Euclidean Spaces

1 Further Set Theory

We will pause briefly to introduce some more notions from set theory which
will factor significantly moving forward. In particular, we will be interested
in appreciating the differences which can arise when consider intersections
and unions of finite versus infinite sets.

First of all, we generalized our notion of a family of sets. We have already
seen finite families of sets {Sn}ne{l,..., ~y and countably infinite families of
sets {Sptnen. We can also, however, consider uncountable families of sets
{Sa}aca by choosing A to an uncountable set (for instance, an interval).
Our definitions remain analoguous to before. We have

re ) Sa (1)
if x € S, for some a € A, and

re ) S @)

if x € S, for all & € A. We will see that there can be significant differences
between finite and infinite (countable or uncountable) sets with regards to
intersection and union.

Example 1: Consider the family of sets {S,, }nca where

Sn—{:ceR|0<x<1}—<0,1>.
n n

Determine the union (1) and the intersection (2) when (a) A is any finite

subset of N, and (b), A =N.

Solution: For any finite subset A C N, we have that min(A4) = m and
max(A) = M for some m, M € N. We also clearly have that S,, C S,, for
all m > n. It follows directly that

Usn:5m=<o,;>, and ﬂsnst:<0,Al4>‘

neA neA



Now consider A = N. Notice that we still have S, C S,, for all m > n

so that

U Sn=51=(0,1).

aeN
The intersection is not quite so clear since there is no element N such that
max(A) = N. Consider the question directly: What elements z € R are in
every set S,, n € N7 We quickly realize that we cannot have any strictly
positive number z > 0 because there will always be an n sufficiently large
so that 0 < 1/n < x. It follows that

ﬂsn:@.

neN

The moral of the story is that the infinite intersection is empty even
though every finite intersection from the set is nonempty. In fact, every
finite intersection has an infinite number of points (since it is an interval).

Example 2: Determine the union (1) and the intersection (2) for the
family of sets

Sa={rzeR| —2+a<z<l4a}=[-2+qo,1+«q)

where (a) A is any finite set of points from the interval (0,1), and (b)
A=(0,1).

Solution: This example is slightly different than the previous one in that
the index set A is an interval rather than a countable set. Nevertheless, we
can draw individual sets in exactly the same way as before. For example,
we have

1 1
Sos=[-1515), S1 =|-2+—14+ ), etc.
s = 21519, 55, )

Now consider the intersection and union for any finite set of points drawn
from the interval (0,1). That is to say, consider a set A = {aq,...,an}
where a; € (0,1) for all i = 1,..., N. From this set, we define min(A) =m
and max(A) = M where m < M so that the extreme sets are

Sm=[-24+m,1+m) and Sy =[-2+M,1+M).

Notice that 0 < m < M < 1 implies that -2 < 24+ m < -2+ M < —1
and 1 <14+m <14+ M < 2so that

2<24+m<24+4M<14+m <14+ M <2,



It follows that we have
N N
USan:[—2+m,1+M) and ﬂsan:[—Q—i-M,l—i—m).
n=1 n=1

Now consider the union and intersection for the interval A = (0, 1) (which
is infinite!). We notice that we do not have a maximal or minimal element
within the set A. Instead, we identify the extreme sets

So = [—2, 1) and Sl = [—1,2).

We notice that these sets are not contained in the family of sets {S,} but
anything arbitrarily close to them is, so long as we choosen the interval to
approach from the correct side.

Consider the union. We notice that sets approaching the extreme sets Sy
and S cover everything in the interval (—2,2). (This can be seen by noticing
that, for any small € > 0, there is an « € (0, 1) so that —2 < —24a < —2+e¢,
and similarly for the other end point.) We might wonder about whether we
can include the endpoint z = —2. After all, it is in the extreme set. In this
case, we cannot, because a > 0 implies —2 < —2 4+ « so that —2 & S, for
any a € (0,1). We have that the desired set is

U Sa =(-2,2).

a€A

Now consider the intersection. We start by noticing that every x €
SoN Sy = [—1,1) is in the intersection. Consider, however, the endpoint
x = 1. The have only excluded this point because it is not in Sp; however,
Sp is not in the family of subsets we are considering. We can see that for
any o > 0, we have 1 < 1+« so that 1 € S, for all a € (0,1). We therefore

have
[ So=[-1,1].

a€A

We should pause for a moment to consider how strange this truly is. We
have just seen that, for every finite family drawn from the set, the union
and intersection corresponded to an interval which has the same form as
the original interval—one endpoint is included, one is not. For the interval
corresponding to the infinite union, however, neither endpoint was included,
while for the infinite intersection interval, both endpoints were included. So
strange things can happen (and properties can change!) when we consider



infinite families! O

We will see later on that we will be able to prove general properties
about infinite intersections. For now, though, we will content ourselves with
the following classical result.

Theorem 1.1 (DeMorgan’s Laws). Suppose S, C X, a € A, is a family of
subsets of a universal set X. Then

aEA
and .
(m Sa) = U Sgc
aEA aEA
Proof. Take x € (UaeaSa)¢. Tt follows that

z¢ | Sa

acA
x &S, for any o € A
x eSS forallae A

T € ﬂsg

a€cA

I

It follows that (UacaSa)® € NacaSS. The other implication follows by the
same steps above in reverse, so that (UacaSa) = NacaSS. The other law
follows similarly. O

2 Metric Spaces

So far, we have spent the majority of our time investigating ordered systems
and, in particular, ordered fields. We understand the relationships >, <, +,
-, etc., and know what it means for a set to have a maximum, minimum,
supremum, and infimum. We also understand the real numbers R as the
completion of the rational numbers Q with respect to least upper bound
property (the property of containing the least upper bound of each subset,
a property which Q does not possess).

We should not grow too comfortable, however, with the idea that ordered
sets are the best structured sets we can imagine. For instance, consider the



question of relating points on a map (say, different cities or landmarks). We
might be interested in such questions as:

e How far is Madison from Milwaukee?
e Is Madison closer to Milwaukee or Chicago?

e If you travelled from Madison to Milwaukee, then to Chicago, how far
would you have travelled? Is this shorter than traveling via a direct
route?

These questions seem like questions we should be able to handle by the order
operator. After all, we very clearly need some notion of “close” and “far”
which necessitates and order where “far” is greater than “close”.

So what’s missing? Well, the topology (think topography, but in general
mathematical spaces) of map is not the same as the topology of the real
number line. In order to define where Madison is on a map, we need two
coordinates rather than just one. More specifically, we need an ordered pair
(a, b) where a corresponds to the latitude and b corresponds to the longitude
(both of which could be considered to be real numbers, if we liked).

If we want to model anything which has any real-world meaning, we had
best be able to accommodate this mathematically! We have the following
definition.

Definition 2.1. For any n € N, we define the n-dimensional Cartesian
product over the reals to be

R" ={(x1,...,zp) |x; €Rji=1,...,n}.
The elements x;, i = 1,...,n, are called coordinates.

We will commonly refer to the elements of R™ as vectors (or simply
points, depending on the context) and denote them with boldface or vector
notation, i.e. x € R™ or & € R®. We have the following definition.

Definition 2.2. We will say that a Cartesian product R™ is a Fuclidean
space if, for any x,y € R"™ and any o € R, we have the following operations:

(1) Vector addition: x+y=(x1+y1,...,Tn+Yn)
(2) Scalar multiplication: ax = (axqy,...,qx,)

We additionally endow Fuclidean spaces with the following:



(8) Vector norm: x| = vx-x =

n
2
i=1

n
(4) Dot product (or inner product): x-y = Zmiyi
i=1

Properties (1) and (2) turn R” into a vector space. The norm (3) is
a measure of the magnitude of elements in R™ (turning R"™ into a normed
space) while the inner product is related to the relative orientation of ele-
ments (turning R™ into an inner product space). We will not deal with
these concepts significantly in this course, except to notice that x-(y +z) =
x -y + x -z (distribution) and x -y = y - x (commutativity). (Note that we
have already used the operator “.” in our field axioms, but that R™ is not a
field because the multiplication operator does not take two elements of R"
into R™. The context should make it clear which operation is meant.)

Returning to our previous example, it is clear that the space we are
interested in for describing the location of our cities on a map is the two-
dimensional Euclidean space

R? = {(x,y) | 2,y € R}.

So how do we know which city is closest to which city? We still have a
non-trivial problem to overcome. We know that R is an ordered set, so we
can tell which city is farther to the west or the east, or independently which
is farther to the north or the south. But we want some combination of these
two directions.

We might think that we could simply extend the order operator as we
have defined it, but we would get quickly frustrated. In fact, there is no
order operator which turns even R? into an ordered set as we have defined
it. (This should not be that surprising, since an order requires that the
elements of the set can be arranged in some way from least to greatest.
Imagine running your finger along a page of paper, picking up points from
lowest to greatest, and being asked to not stop until all of the points have
been captured. Good luck!)

Of course, we do not panic for too long. We have known since grade
school that the distance between two points x = (z1,x2) and y = (y1, y2) is
given by the Pythagorean theorem as

V(@1 — 1) + (22 — 1)




This is known as the Euclidean distance between two points. We can now
very quickly determine how far Madison is from Milwaukee, or Chicago, etc.

It should nevertheless be slightly unsettling that mathematical notions
defined so far as insufficient to handle this case. In order to overcome this,
we introduce the following.

Definition 2.3. Consider the pairing (X, d) where X is a set and d(x,y) is
an operator which takes elements from X into R. We will say that (X, d) is
a metric space with metric (or distance) d(z,vy) if

1. d(z,y) >0 for all z,y € X, and d(z,y) = 0 if and only if v = y;
2. d(z,y) = d(y,x) for all z,y € X; and
3. d(z,z) <d(x,y) +d(y,z) for all x,y,z € X.

Notice here that R is an ordered set while the original space X may not
be. So what we are doing here is recovering a sense of order by mapping
elements in the original set into a set we know is ordered—mnamely, the real
numbers.

We can interpret the axioms for “distance” in this way:

1. The distance between two points is not negative and is zero if and only
if the two points coincide.

2. The distance from one point to another is the same as the distance
back.

3. The distance from one point to any other is greater than the combined
distance of going through an intermediary point (i.e. the direct route
is the shortest route).

In other words, this operation obeys the conventions we normally associate
(without thought!) to our colloquial notion of “distance”. The third prop-
erty is commonly called the triangle inequality due to its geometric inter-
pretation (see Figure 1).

Note (for those taking further analysis courses): We will primarily con-
sider Euclidean spaces in this course. It should be noted, however, that,
while every vector space with a norm and/or an inner product is a metric
space, not every metric space has a norm or an inner product. The general
sequence, from weakest to strongest is:

Metric spaces 2 Normed vector spaces O Inner product spaces.



X d(x,z) z

Figure 1: Graphic interpretation of the triangle inequality. We require that
d(z,z) < d(z,y) +d(y, 2).

That is to say, every inner product space has a norm, and every normed
vector space has a metric, but the converses do not necessarily hold.

Theorem 2.1. The Fuclidean space (R™,dy) where

> (i — yi)?

i=1

da(x,y) =[x =y =

18 a metric space.

What we need to do is show that show that the conventionally defined
distance between two points is a distance in the sense of Definition 2.3.
We expect, based on our intuition, that this is true but may not have ever
stopped to consider how we might explicitly prove it. We will see that it
is not quite as trivial as we might expect, especially proving the triangle
inequality. Before we proceed with the proof of this result, therefore, we
introduce the following classical result.

Theorem 2.2 (Cauchy-Schwarz Inequality). Suppose x,y € R™. Then

-yl <[] lyll-

Proof. Note that the compact statement above is not fully illustrative of
what is really happening. Expanding out the terms for x -y, ||x||, and |y||,
we have

n
E LilYi
i=1

n n
<\ DT | Doy
i=1 j=1



We prove this result, we cannot simply expand the left-hand side and re-
arrange to obtain the right-hand side. Instead, we start with the observation

that
n n
S (@i —ww)* >0

i=1 j=1
where the positivity follows from the basic field properties of squaring real
numbers. We now expand this term. We have

SN (@i — ) =D (s — wy) (ways — 50)

i=1 j=1 i=1 j=1

n n
=33 (=Y} + 257 — 2miyisy;)
i=1 j=1

n n n 2
—o(322) () -2 (3w
i=1 j=1 i=1

=2|x[* ly[* = 2(x-y)* = 0.

It follows immediately that (x - y)2 < ||x||*|ly||>. The desired inequality
follows from taking the square root, and we are done. ]

Now consider the original claim.

Proof of Theorem 2.1. We prove the three properties of Definition 2.3 hold.
Property 1: We clearly have da(x,y) > 0 since the square root is never
negative. Since x = y if and only if 21 = z9 and y; = y9, it follows that

da(x,y) = 0 if and only if x =y.

Property 2: 1t is clear that we have

n n

da(x,y) = | D (@i — ) = (| D (v — 2:)? = daly, x).

i=1 i=1

Property 3: It will be convenient to recast the metric da(x,y) in terms of
the Euclidean norm. We can quickly see that, for any x,y € R™, we have

da(x,y) = [lx —yl =




We furthermore have that

2

n
XX = E T+ Ty —
=1

That is to say, we can recast the Euclidean metric as a norm, and recast
the norm as an inner product. (This is not true of all metric spaces but for
Euclidean spaces it will often be a helpful notational shortcut!)

We now use basic properties of norms and inner products (and the
Cauchy-Schwarz inequality) to prove that

Ix+yl < [Ix[| + [yl (4)
for all x,y € R". We have

x+yl* = (x+y) (x+y)
2 2
= ||x[” +2x -y + ||yl
2 2
< %"+ 2[x -y + [y
< |1x|I* + 21|l |y ]| + llylI” (Cauchy-Schwarz)
2
= ([l + [ly[)*-
It follows after taking the square root that ||x +y| < [|x| + [ly|l-
Terrific, but what does all of this have to do with the triangle inequality?

We have verified that ||x + y|| < ||x]| + |ly|l, but what we want to verify is
that

d2(X7 Z) < d2(X7 Y) + d2(Y> Z)'
We recall that this is equivalent to

Ix =zl < lx =yl + [y — =l (5)

We immediately suspect that the similarity between (4) and (5) is not co-
incidal. If we switch out x for x —y and y for y — z, we have

[x—zl| = [x=-y)+ ¥y —2)| < x—yl + [y + =z
by the previous result, so that the triangle inequality has been shown. [J

There are a few notes worth making about the (lengthy!) process we
just went through.

10



e [t probably seemed like a lot of work to introduce the notions of an
“inner product” and a “norm” to prove a simple inequality. It turns
out that, even for R?, it is extremely cumbersome to prove the triangle
inequality directly, i.e. without resorting to norm and inner product
notation. (Try it!)

e It is only a slight generalization to extend the proof we just used
to show that the triangle inequality to all spaces where the metric
follows from the norm, and the norm follows from the inner product.
In particular, it can be extended to the complex field C. We will
not consider these spaces, or the general inner product operator, in
significant depth in this course, but we should feel comfortable using
x -y and ||x|| as short-hand notation when dealing with the Euclidean
space R™.

3 Metric Spaces on R"

We probably feel supremely confident at this point. We have introduced a
new mathematical concept, that of a metric, and it turned out to be exactly
the same as the conventionally defined distance between two points. So why
bother with this abstraction?

The reason is obvious after a little thought: the notion of measuring
the distance between two objects of interest depends on the context of the
problem involved. For instance, consider the problem in image processing of
how “close” a processed image (say, a digital copy) is to the original. How
do we measure the “distance” between two images? This is not a trivial
problem.

Another problem, which is frequently encountered in statistics, is that
of determining a model which “most closely” fits the given data (i.e. for
which the “distance” between the model and the observations is minimized).
The Euclidean metric givens a reasonable “penalty” for component-wise
differences—mnamely, it squares the difference. Depending on the context,
however, it may be appropriate to either penalize component-wise differences
more severely (i.e. pick a higher power) or not as much (i.e. pick a lower
power). So another metric may be more appropriate depending on the
context of the problem being investigated.

11



We now define the following metrics on R™:

dixy) =Y |z — i
=1

do(x,y) = (| > (i — yi)?
=1
doo(x,y) =  max |z —yil.

1e{l,...,n}
Theorem 3.1. (R",d;) and (R",d) are metric spaces.

Proof. We first show that d;(x,y) is a metric.

Property 1: We clearly have d; (x,y) > 0 and d;(x,y) = 0 if and only x = y.
Property 2: 1t is clear that

di(x,y) = Z |z —yil = Z yi — x| = di(y, x).
1=1 =1

Property 3: Recall that for any ordered set S, we have
[z 4yl < |z + |yl

from Assignment 2. Since R is an ordered set, we can replace x with x; — y;
and y with y; — 2; so that, for any x,y,z € R"™, we have

n
di(x,2) = Y | — 2l
=1
n
= | — i+ yi—
=1

n n
§Z|$i—yi|+2|yz‘—zi|
i=1 =1
= dl(X7Y) +d1(y,Z)-

It follows that (R™,d;) so defined is a metric space. The proof for (R", dw)
is left as homework. O

So even on R", we may define multiple metrics which satisfying Definition
2.3. It is worth emphasizing that the “distance” between two points in these

12



metrics need not necessarily coincide. For instance, consider the points
x = (0,0) and y = (1,1). We have

di(x,y) = |z1 —y1| + |22 — 92 = 2,

da(%,y) = V/(z1 = 91)? + (22 — y2)? = V2, and

doo(xvy) = maX{|x1 - yl’a ‘172 - y2|} = maX{l? 1} =1

So, even though each of these metrics give a measure of distance, they do in
fact measure distance in a different way. We have the following interpreta-
tions:

1. The metric do measures distance as the crow flies, so to speak. In this
sense, it is our most natural notion of distance.

2. The metric d; measures distance independently in each direction (i.e.
each x;). For this reason, it is sometimes called the tazicab metric,
since it measures distance as though R"™ were partitioned into city
blocks where buildings obstruct direct passage from one point to an-
other unless they happen to lie on the same street.

3. This metric dy is also sometimes called the chessboard metric. The
analogy is made by considering how many steps it would take the king
to move from one square to another on a chessboard. (Note that in a
single step the the king may move to any adjacent square, including
the diagonal.) If the king desires to move to the square one positive
left, and three positions up, it will take max{1,3} = 3 moves to get
there. If the desired square is four positions left, and three positions
up, however, it will take max{4,3} = 4 moves to get there.

4 Other Metric Spaces

We are now somewhat familiar with metrics on the familiar Euclidean space
R™. What other spaces could be define metrics on? Consider the following.

Example: Consider the space (I,d) where I = {[a,b] | a,b € R} and,
for all [1,1, € I,

d(I1,I5) = max {maxmin|a:y\,maxmin|xy|}. (6)

zely yela yely xely

Theorem 4.1. (I,d) is a metric space.
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Proof. Homework! O

We should pause to consider exactly what we are talking about, and how
this differs from the previous examples. The set I is the set of all intervals
of the form [a,b] C R. So when we talk about the “distance” between two
elements in the set, are are talking about the distance between two intervals.
(To emphasize again, the objects or interest are not the points x € I or
y € Iy where I, Iy € I, but the intervals I; and Iy themselves!)

The “distance” (6) between two intervals is also a little strange. We
want a maximum, where we choose over the following two objects. The first
objects tells us to consider an x € I; (the first inverval), and then choose the
y € Iy (the second interval) which is closest to z. We then want to take the
x € I for which this closest element is the greatest distance away. For the
second element, we reverse the process. That is to say, we take an element
y € Iy, choose the closest element x € I1, and then choose the y € I, where
this value is the greatest. Despite the strange formulation, it is possible to
show that this is a metric. It is a special case of the Hausdorff metric. (The
full proof is challenging and a bit beyond the scope of the course, although
we will do a little more work with this metric on the homework!)

Let’s consider the following cases. Determine the “distance” between
the following sets, as defined by the Hausdorff metric (6). (See Figure 2.)

1. Iy =[~1,0] and I = [0.5, 1]
2. I = [-1,0] and I = [—0.5, 1]

3. I = [~1,1] and I = [-0.5,1]

Solution (1): We can clearly see that the = € I; which is the farthest
away from any element y € Iy is x = —1 (corresponding to y = 0.5). This
gives the value

max min [z — y| = 1.5.

zely yels
The y € Iy which is the farthest away from any element x € I} isy = 1
(corresponding to x = 0) so that

max min |z — y| = 1.
yely xely

It follows that
d([l, Ig) = max{1.5, 1} =1.5.
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Solution (2): Notice that the closest element for any x € I or y € Iy
in the overlap is zero. This is not, however, enough to make the distance
between the sets zero! We have

max min [z — y| = 0.5
zel, yels

where x = —1 and y = —0.5 (no element in I is closer to z = —1 than
y = —0.5). We also have

maxmin [z —y| =1
yely x€ly

where y = 1 and = 0 (no element in [; is closer to y = 1 than z = 0). It
follows that
d(Il,IQ) = Imax {05, 1} =1.

Solution (3): Notice that we have I C I;. It follows immediately that

maxmin [z —y| =0
yely xely

because, for every y € I, there is an = € I such that y = x (so that
|z — y| = 0). We still may not conclude that the distance between the sets
is zero! This is because we have

max min [z — y| = 0.5
xzel; yela

where £ = —1 and y = —0.5. It follows that

d(I1,Iz) = max {0.5,0} = 0.5.
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Figure 2: Illustration of Hausdorff metric on the intervals I; and I» given in
the example.
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