
MATH 521, WEEK 6:
Open and Closed Sets, Closure, Connected

Sets

1 Open and Closed Sets

We should feel happy with what we have accomplished so far. We have
identitied a formal, axiomatic way to capture the idea of “distance” between
two points in a set. Importantly, our axioms are general enough to be
applicable to a wide variety of settings (although we will predominantly
consider Euclidean spaces Rn).

So what can we do with this newly-minted “metric”? Returning to our
map example, if we are heading out for dinner, the first thing we would
probably want to do is characterize which restaurants are “nearby”, i.e. in
our neighborhood. We might be interested in travelling five miles, but not
ten. So we might be interested in the set of all restaurants within five miles.
This should give us a better sense of what the terrain (i.e. topology, in
math-speak) really looks like.

We have the following definitions.

Definition 1.1. Let (X, d) be a metric space. Take x ∈ X and r > 0. We
define the open ball (or simply ball) of radius r centered at x to be the set

Br(x) = {y ∈ X | d(x, y) < r}.

A ball centered at x ∈ X is said to be the unit ball centered at x if r = 1.
A set N(x) is called a neighborhood of x ∈ X if there exists an r > 0 such
that Br(x) ⊆ N(x).

This seems fairly straight-forward. The open ball is just the set of all
points in our space within the specified distance r.

Example: Consider the metric spaces (R2, d1) and (R2, d2) where

d1(x,y) = |x1 − y1|+ |x2 − y2|

and
d2(x,y) =

√
(x1 − y1)2 + (x2 − y2)2.
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Draw the unit balls centered at 0 = (0, 0) in the (x1, y2)-plane.

Solution: Respectively, we are interested in the following sets:

d1 : B1(0) =
{

(x1, x2) ∈ R2 | |x1|+ |x2| < 1
}

and

d2 : B1(0) =

{
(x1, x2) ∈ R2 |

√
x21 + x22 < 1

}
.

We recognize the second set as corresponding to the inside of a circle of
radius 1 (excluding the boundary). The first set is a little more obscure, but
we should be able to agree that it corresponds to the figure given in Figure
1(a). We should be quite satisfied the correspondence of the ball with metric
d2 and the traditional notion of a ball. For the metric d1, the shape of the
“ball” is a diamond! Nevertheless, we notice that the equations for the ball
is analogous to our conventional understanding of the equations for a ball.
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Figure 1: Unit balls in R2 for the metrics (a) d1, and (b) d2. The dotted
edges indicate that the boundary points are not included in the ball.

Example: Consider the metric space (R2, d2). Show that the half-plane

H =
{

(x1, x2) ∈ R2 | x2 ≥ 0
}

is a neighborhood of x = (0, 1) but not of y = (0, 0).

Solution: All we need to do is find a ball centered at x = (0, 1), i.e. a
Br (x), such that Br (x) ⊆ H. Since we clearly can take r = 1/2 and have
B1/2(x) ⊆ H, it follows that H is a neighborhood of x. It is clear that the
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half-plane H is not a neighborhood of y = (0, 0) since every open ball Br(y)
contains some x ∈ Br(y) such that x2 < 0. It follows that x 6∈ H so that H
is not a neighborhood of y. (See Figure 2.)

1-1
Br((0,0))

B1/2((0,1))

Figure 2: The upper half-plane H is a neighborhood of x = (0, 1) but not
of y = (0, 0) since there is a ball around x entirely contained in H but no
such ball around y.

We introduce the following definitions.

Definition 1.2. Let (X, d) be a metric space and suppose S ⊆ X. Then a
point p ∈ S is said to be an interior point of S if there is a neighborhood
of p, N(p), such that N(p) ⊆ S. A set S is said to be an open set if every
point p ∈ S is an interior point of S.

Notation: It is common to denote the set of all interior points of a set S by
So. Adopting this notion, the condition for a set being an open set is S = So.

Example: Consider the half-plane H ⊂ R2 and the points x = (0, 1)
and y = (0, 0). We can now see that x is an interior point of H while
y = (0, 0) is not. Since not every point z ∈ H is an interior point it follows
that H is not open.

Example: Show that the interval I = {x ∈ R | 0 < x < 1} is an open
set in the metric space (R, d2).
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Note: In R, the three metrics d1, d2, and d∞ coincide. Specifically, we
have that d1(x, y) = d2(x, y) = d∞(x, y) = |x− y|.

Solution: The intuitive justification is clear. No matter where we are
along the interval, x ∈ (0, 1), we may construct an interval around x suf-
ficiently small so that the new interval is contained in (0, 1). Formally, we
define

r1 = min {x, 1− x} .

This just keeps track of whether we are close to the left or the right endpoint
(0 or 1, respectively). Note that we have r1 ≤ x so that x − r1 ≥ 0 and
r1 ≤ 1− x so that x+ r1 ≤ 1. It can then be easily seen that

Br1(x) = {y ∈ R | x− r1 < y < x+ r1} ⊆ (0, 1)

because 0 ≤ x− r1 < x < x+ r1 ≤ 1. �

We are not quite done yet. After all, we know that not all points are
interior points, and that not all sets are open. We therefore define the
following sets of points.

Definition 1.3. Let (X, d) be a metric space and suppose S ⊆ X. Then a
point p ∈ X is said to be:

1. a limit point (or accumulation point) of S if every neighborhood
N(p) of p contains a point q ∈ S, q 6= p;

2. a boundary point of S if every neighbourhood N(p) of p contains a
point q ∈ S and a point q′ ∈ Sc; and

3. an isolation point of S if p ∈ S and p is not a limit point.

A subset S is said to a closed set if it contains all of its limit points.

Notation: It is common to denote the set of all limit points of S as S′ and
the set of all boundary points of S as ∂S. The condition for a set being a
closed set is equivalent to S′ ⊆ S.

It is important to notice that, when considering limit points, we must
consider points not in S as well as those in S. In particular, there may
be points in Sc which as “close enough” to S so that every neighborhood
contains points in S.
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It is also important to note that the neighborhoods in question exclude
the point p ∈ S. That is to say, we consider true neighborhoods “around” a
point. A consequence of this is that it is not sufficient for p ∈ S to possess a
limiting sequence of points which converges to p in order to conclude that p
is a limit point! (Since this would imply that an isolated point p ∈ S would
be a limit point since the limiting sequence {p, p, p, . . .} converges to it. It
is important that we exclude p from any such sequence!)

Example 1: Show that the upper-half plane H is a closed set.

Solution: We need to identify the limit points of H, H ′. We notice
immediately that, for all x ∈ H, we have that Br(x) contains points in H
other than x. It follows that H ⊆ H ′.

There may, however, be limit points outside of H. To explore this pos-
sibility, we consider the set

Hc =
{

(x1, x2) ∈ R2 | x2 < 0
}
.

For any (x1, x2) ∈ Hc, take r = x2/2 > 0 so that x2 < r < 0. It is clear that
Br(x) ⊆ Hc so that Br(x) does not contain any points in H. It follows that
x 6∈ H ′. Since the choice of x ∈ Hc was arbitrary, we have that H ′ ⊆ H
(actually, H ′ = H in this case) so that H is a closed set. �

Example 2: Show that the interval I = (0, 1) ⊆ R is not a closed inter-
val.

Solution: We first consider x ∈ I. By an earlier argument, we can
choose r1 = min{x, 1− x} so that Br1 = (x− r1, x+ r1) ⊆ (0, 1). It follows
that I ⊆ I ′.

Now consider x ∈ Ic. It is clear that if x < 0 or x > 1, we can pick an
r > 0 sufficiently small so that Br(x) ⊆ Ic. If we choose x = 0 or x = 1,
however, things are not quite so clear. In fact, for any r > 0, we have
that there are y, z ∈ I such that 0 < y < r′ and 1 − r′ < z < 1 so that
Br′(0) ∩ I 6= ∅ and Br′(1) ∩ I 6= ∅. It follows that {0, 1} ∈ I ′ even though
{0, 1} 6∈ I. It follows that I is not a closed set. �

One thing that should have struck us with these two examples is that we
considered properties of the set’s complement. So what can we say about
the complement of a set as it relates to interior points, limit points, open
and closed sets? We have the following result.
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Theorem 1.1 (Theorem 2.23 in Rudin). Suppose (X, d) is a metric space.
Suppose S ⊆ X. Then:

(1) If S is an open set, Sc is a closed set.

(2) If S is a closed set, Sc is an open set.

Proof. We will prove both cases by contradiction.

Proof of (1): Suppose S is open and Sc is not closed. Since S is open, we
have that x ∈ S implies there is an r > 0 so that Br(x) ⊆ S. Now suppose
that Sc is not closed. If Sc were closed, that would imply that x ∈ (Sc)′

implies x ∈ Sc. Since Sc is not closed, we have that there is an x ∈ (Sc)′

such that x ∈ S. It follows that there is an x ∈ S so that Br(x) contains
points in Sc for all r > 0. This is a contradiction with the fact that S is
open. The claim (1) follows.

Proof of (2): Suppose S is closed and Sc is not open. Since S is closed, we
have that S contains all of its limit points, so that if x ∈ X has the property
that Br(x) contains points in S for all r > 0, then x ∈ S. Now consider the
claim that Sc is not open. If Sc were open, we would have x ∈ Sc implies
there is an r > 0 so that Br(x) ⊆ Sc. It follows that if Sc is not open, then
there exists an x ∈ Sc such that Br(x) contains points in S for all r > 0. It
follows that we have found an x ∈ Sc such that x ∈ S′, contradicting the
fact that S is closed. The claim (2) follows.

Example: We can see that this was exactly how our previous examples
worked out. We showed that the interval I = (0, 1) was open, and now we
can say that the set

Ic = (−∞, 0] ∪ [1,∞) = {x ∈ R | x ≤ 0 or x ≥ 1}

is closed. We also saw that the upper half plane

H = {(x1, x2) ∈ R2 | x2 ≥ 0}

was closed, and we can clearly see that the complement set

Hc = {(x1, x2) ∈ R2 | x2 < 0}

is open.

Before we get too carried away with our newfound topological wisdom,
we should make the following points:
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• Sets can be neither open nor closed! Consider the interval

I = (0, 1] = {x ∈ R | 0 < x ≤ 1} .

This set cannot be open, because 1 ∈ I but 1 is not an interior point,
and this set cannot be closed, because 0 is a limit point but 0 6∈ I. It
follows that the set is neither open nor closed.

• Sets can be both open and closed! Let’s be careful about what this
means. We have that S ⊆ X is closed if S′ ⊆ S, and that S is open
if S ⊆ S′. To have both be true at the same time, we must have
S′ ⊆ S ⊆ So, i.e. every limit point is an interior point. For every
metric space (X, d), we can immediate find one such set: S = X. For
instance, if our space is R, we can simply take S = R. A consequence
of Theorem 1.1 is that the set S = ∅ is also both open and closed. (We
can also establish this directly by noting that the condition x ∈ S′

implies x ∈ S, and x ∈ S implies x ∈ So are vacuously true because
all of the sets are empty.) We will consider the possibility of metric
spaces for which sets other than S = X and S = ∅ may be both open
and closed when we consider connected sets.

2 Unions and Intersections

We understand what it takes for a set to be open or closed but we have
yet to consider how such sets interact with one another. In particular, we
will be interested in how the property of whether a set is open or closed is
affected by the union and intersection operations.

Consider the example of the family of sets {Sα} where

Sα = {x ∈ R | − α < x < α} = (−α, α)

and α ∈ A. We can easily determine, for any finite subfamilyA = {α1, . . . , αN}
drawn from the interval (0, 1), we have that⋃

α∈A
Sα = Sm = (−M,M)

and ⋂
α∈A

Sα = SM = (−m,m)

where m = min(A) and M = max(A). In particular, we notice that the
{Sα} is a family of open sets and that the union and intersection of the
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entire family are open sets. We might conjecture, therefore, that the finite
intersection and union of open sets is an open set.

We now consider A = (0, 1). As expected, we have that, we have that⋃
α∈A

Sα = (−1, 1)

which is an open set. We notice, however, that⋂
α∈A

Sα = {0}

is a closed set. So the infinite union produced an open set but that the
infinite intersection produced a closed set. The property switched!

We have the following result.

Theorem 2.1 (Theorem 2.24(a,c) in Rudin). Suppose (X, d) is a metric
space and {Sα} is a family of open sets such that Sα ⊆ X for all α ∈ A.
Then:

(1) Every (finite or infinite) union from {Sα} is an open set.

(2) Every finite intersection from {Sα} is an open set.

Proof. We prove this directly.

Proof of (1): Define S =
⋃
α∈A Sα. Suppose x ∈ S. It follows that

x ∈ Sα′ for some α′ ∈ A and Sα′ is an open set. It follows that there is an
r > 0 such that Br(x) ⊆ Sα′ . Clearly Br(x) ⊆ S so that x is an interior
point of S. Since the choice of x was arbitrary, it follows that every point
in S is an interior point, so that S is an open set.

Proof of (2): Define S =
⋂
α∈A Sα. Suppose x ∈ S where Sα is a finite

family of open sets. It follows that, for every α ∈ A, we have that there is
an rα > 0 so that Brα(x) ⊆ Sα. Take

R = min
α∈A
{rα} .

Since A is a finite set, we know that R exists. It follows that BR(x) ⊆ S.
Since x was chosen arbitrarily, it follows that every point x ∈ S is an interior
point of S, so that S is open.
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This is excellent! We can now close the book open sets, aside from the
very special case of an infinite intersection. Furthermore, we can see in the
proof exactly where the argument breaks down if we do consider the infinite
case, since min

α∈A
rα may not exist if A is not finite (but if it does, the argument

still holds!).
But what about closed sets? Consider the family of sets {Sα} where

Sα = {x ∈ R | − α ≤ x ≤ α} .

Proceeding as before, we have that any finite family A = {α1, . . . , αN} drawn
from (0, 1) gives ⋃

α∈A
Sα = Sm = [−M,M ]

and ⋂
α∈A

Sα = SM = [−m,m]

where m = min(A) and M = max(A). We can clearly see that both of these
sets are closed.

Now consider A = (0, 1). We have⋂
α∈A

Sα = S1 = {0}

which is a closed set. For the union, we have to be careful, since we may
approach the endpoints −1 and 1 but may never reach them (and therefore
contain them in any set in the family). We have that⋃

α∈A
Sα = (−1, 1).

We notice immediately, however, that this is an open set. The property
(again!) has switched.

We have the following result.

Theorem 2.2 (Theorem 2.24(b,d) in Rudin). Suppose (X, d) is a metric
space and {Sα} is a family of closed sets such that Sα ⊆ X for all α ∈ A.
Then:

(1) Every finite union from {Sα} is a closed set.

(2) Every (finite or infinite) intersection from {Sα} is a closed set.
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Proof. We prove this directly.

Proof of (2): Define S =
⋂
α∈A Sα where {Sα} is a family of closed sets.

We will show x ∈ S′ implies x ∈ S. Suppose x ∈ S′. It follows that, for
every r > 0, Br(x) contains elements in S, and therefore contains elements
in each Sα, α ∈ A. It follows that x ∈ S′α for all α ∈ A. Since Sα is closed
for all α ∈ A, it then follows that x ∈ Sα for all α ∈ A so that x ∈ S. Since
x ∈ S′ was chosen arbitrarily, the result follows.

Proof of (1): Define S =
⋃
α∈A Sα where {Sα} is a finite family of

closed sets. Suppose x ∈ S′. By definition, for every r > 0, Br(x) contains
elements in S. Since {Sα} is finite, there is a set Sα∗ such that Br(x) contains
elements in Sα∗ for all r > 0. (To see this, suppose otherwise. Then there
would be an R > 0 so that Br(x) does not contain elements in any Sα for
all 0 < r < R. This would imply that Br(x) does not contain any elements
in S, a contradiction.) It follows that x ∈ S′α∗ and, because Sα∗ is closed, it
follows that x ∈ Sα∗. Consequently, we have that x ∈ S. Since the choice
of x was arbitrary, the result follows.

3 Closure and Interior

In various applications, we will be interested in only open or closed sets.
That is to say, we will not be able to perform the operations we wish to
perform without first ensuring we are dealing with either and open or closed
set. We have already seen, however, that not every set is open or closed. So
what can we do?

This issue is not as tricky as it seems. We will simply construct the sets
we require. Furthermore, we already have one of the sets we need! If we
are interested in making an open set out of S, we can throw away all of the
points S which are not interior points. That is say, we pick So.

Theorem 3.1. Suppose (X, d) is a metric space and S ⊆ X. Then the
largest open set contained in S is So.

Proof. We know that So ⊆ S and So is open. It remains only to show that
there is no larger set with these properties. Suppose otherwise. That is
to say, suppose there is an x 6∈ So so that the set B = So ∪ {x} satisfies
B ⊆ S and B is open. If B ⊆ S and B is open, then x ∈ So, which is a
contradiction. The result is shown.

10



So, if we are interested in dealing with the open portion of S, we deal
with the interior. Now suppose we are interested in constructing a closed
set out of S. We have the following definition.

Definition 3.1. Suppose (X, d) is a metric space and S ⊆ X. The closure
of S, S, is the set S together with its limit points, i.e. S = S ∪ S′.

Theorem 3.2. Suppose (X, d) is a metric space and S ⊆ X. Then the
smallest closed set containing S is S.

Proof. It is clear that S ⊆ S and S is closed (homework). It remains only to
show that there is no smaller set with these properties. Suppose otherwise.
That is to say, suppose there is an x ∈ S such that B = S \ {x} satisifes
S ⊆ B and B is closed. Clearly, however, if x ∈ S′ then B is not closed, and
if x ∈ S \S′ then B does not contain S (since x ∈ S). The result follows.

So if we need to make a closed set out of S, we need to consider the
closure.

Example: Determine So and S for the following sets:

(1) S = {x ∈ R | 0 < x ≤ 1}

(2) S =

{
1

n
| n ∈ N

}
Solution (1): We can fairly quickly determine that the interior points

of S lie in the interval (0, 1) and that the limit points are contained in [0, 1].
It follows that

So = {x ∈ R | 0 < x < 1}
S = {x ∈ R | 0 ≤ x ≤ 1}.

Solution (2): We have not considered sets defined like this in a little
while, but there is no reason we cannot. We have

S =

{
1,

1

2
,
1

3
,
1

4
, . . .

}
.

Consider the interior points. For every x ∈ S, we need to find an r > 0 so
that Br(x) ⊆ S. It is certainly clear that no such ball can be constructed
around 1 or 1/2. How about further points, when n is large and the set
begins to “bunch up”? We still have the same problem. No matter how far
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along the set we go, we will always have points in any ball which are not
from S. It follows that there are no interior points, so that

So = ∅.

Now find the limit points. We need to find points x ∈ R so that Br(x)
intersects S for all r > 0. We attempt first to find such points from S itself.
We quickly grow frustrated. Carrying the earlier discussion forward, for any
x ∈ S, we can find an r > 0 such that Br(x) is entirely disjoint from x! So,
in fact, every point x ∈ S is an isolated point, and therefore cannot be a
limit point.

We are not done, however, since we need to consider x ∈ Sc as well. We
can quickly see that, for any r > 0, there is an n ∈ N so that 0 < 1/n < r.
It follows that 0 ∈ S′ (even though 0 6∈ S). This is the only such point, so
that we have

S′ = {0}

so that
S = S ∪ S′ = S ∪ {0}.

4 Connected Sets

Consider the earlier question of whether a subset S ⊆ X where (X, d) is a
metric space can be both open and closed. We established that S = X and
S = ∅ were both open and closed, but left open the question whether there
were any other such sets. Consider now the following example.

Example: Consider the metric space (X, d) where

X = {x ∈ R | 0 ≤ x ≤ 1 or 2 ≤ x ≤ 3} .

Show that the set S = {x ∈ R | 0 ≤ x ≤ 1} is both open and closed.

Solution: This is straight-forward. We clearly have that, for every
x ∈ [0, 1], B0.5(x) only intersects points in S so that every x ∈ [0, 1] is an
interior point of S. (Notice we do not worry about intersecting with points
−0.5 < y < 0 or 1 < y < 1.5 becaus they are not contained in X.) Similarly,
it is clear that every, for every x ∈ [0, 1] and r > 0, Br(x) intersects [0, 1] so
that every point is a limit point, and there [0, 1] is a closed set. It follows
that S is both open and closed relative to the topology of (X, d). �
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If this example seems manufactured to you, you are probably not alone.
After all, in order to have a set be both open and closed, we needs to have
S′ ⊆ S (closed) and S = So (open) so that S′ ⊆ So, i.e. every limit point
is an interior point. That means that, if we can approach a point (limit
point), we have to be entirely within the set (interior point). It seems like
we should be able to get everywhere in the set by moving toward limits, and
expanding out.

The only way to overcome this was to introduce “gaps” in the fabric
of the metric space itself. We close off this possibility with the following
definition.

Definition 4.1 (Definition 2.45 in Rudin). Suppose (X, d) is a metric space
and S1, S2 ⊆ X. Then we will say that S1 and S2 are separated if S1∩S2 =
∅ and S1 ∩ S2 = ∅. We will say a set S ⊆ X is connected if there do not
exist nonempty separated sets S1, S2 ⊆ X such that S = S1 ∪ S2.

This is a little cumbersome, but we can certainly make sense out of it.
For two sets S1 and S2 to be separated, we must have that S1 ∩ S2 = ∅ and
that no limit from within S1 reaches S2, and no limit from within S2 reaches
S1. In order to be connected, therefore, it must be the case that every pair
of subsets of S1 and S2 such that S1∩S2 = ∅ and S1∪S2 = S satisfies either
S′1 ∩ S2 6= ∅ or S1 ∩ S′2 6= ∅.

Examples: We should be somewhat careful in applying this definition.
Consider the determining whether the following subsets of R are connected.

(1) S = {x ∈ R | 0 < x < 1 or 1 < x < 2}

(2) S = {x ∈ R | x = 0}

(3) S = Q

Solution (1): Intuition should play a key role here. Since we can see
that S has a “hole” in it, we suspect it should not be connected. But we
have to check the definition. The obvious choices for the separated sets are
S1 = (0, 1) and S2 = (1, 2). We can see that S1 = [0, 1] and S2 = [1, 2] and
that, even though S1 ∩S2 = {1}, we have that S1 ∩S2 = ∅ and S1 ∩S2 = ∅.
(Note, in particular, that S1 and S2 may still be separated even if S1∩S2 6= ∅.
That is to say, sharing limit points is not enough to overcome a “gap“!)

Solution (2): Intuition again tells us that this set S, although simple,
is connected (albeit just the single element to itself). It is also clear that
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there are no separated sets such that S1 ∪ S2 = S.

Solution (3): Intuition does not play as large a role here as before.
After all, we know that between any two rational numbers, there are an
infinite number of rational numbers (suggesting connectedness!), but also
an infinite number of irrational numbers (suggesting separation!). We have
to rely on the definition.

To construct our sets S1 and S2, we use the same trick we used earlier.
Let’s divide Q into two halves, with the value separating them not in the
rational numbers. For instance, we can choose:

S1 = {x ∈ Q | x <
√

2}
S2 = {x ∈ Q | x >

√
2}.

It is clear that S1 ∩ S2 = ∅ and S1 ∪ S2 = Q (since
√

2 6∈ Q!) so this is at
least a candidate decomposition of S. We notice that every x ≤

√
2 is a limit

point since every ball Br(x) contains rational numbers. We therefore have
S1 = (−∞,

√
2]. This does not intersect S2 so that S1 ∩ S2 = ∅. Similarly,

we can see that S2 = [
√

2,∞) so that S1 ∩ S2 = ∅. It follows that S1 and
S2 are separated sets and therefore that S is not connected.

Returning to our original question, we have the following result.

Theorem 4.1. Suppose (X, d) is a metric space. Then the only subsets
S ⊆ X which are both open and closed are S = X and S = ∅ if and only if
X is connected.

Proof. Homework!
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