
MATH 521, WEEK 10:
Series, Partial Sums, Convergence

1 Series

Some of the most important applications of the results for sequences in the
real numbers are with respect to analyzing series. That is to say, sum-
mations where the elements being summed are the terms in the sequence.
Many examples spring to mind, from the arithmetic and geometric series
used frequently in grade school mathematics, to power, Taylor, and Fourier
series often utilized in advanced mathematics (and the applied sciences).

Our approach here will be brief, but (reasonably) rigorous. We start by
formally defining the following.

Definition 1.1. Consider a sequence {an} of real numbers. We define the
nth partial sum of {an} to be

sn =
n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an. (1)

We define the infinite series of {an} to be

∞∑
n=1

an = a1 + a2 + a3 + · · · . (2)

In earlier courses, we paid little attention to the subtleties of what (2)
really means. After all, we know properties may change when extending
from a finite case to an infinite one. In this case, we know that, for any
finite number of real numbers, the sum (1) must give another real number.
We can quickly convince ourselves that this is not true for the infinite series,
since we can take

∞∑
n=1

1 = 1 + 1 + 1 + · · · .

Whatever this is, it is not a real number. Suppose, however, that we insist a
series remains bounded. Can we make sense of the infinite sum in this case?
Well, consider the series

∞∑
n=1

(−1)n = (−1) + 1 + (−1) + 1 + · · · .
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This does not tend to infinity but, whatever it is, it is definitely not a real
number. So we do need to give a little thought to when the infinite series is
a real number, i.e. when we have an s ∈ R such that

s =

∞∑
n=1

an. (3)

The resolution comes from considering the topic we just completed: con-
vergence and divergence of sequences. The sequences we will consider, how-
ever, are not the original sequences {an} but rather the sequences of partial
sums {sn}. Intuitively, as we sum more and more terms in a series an to-
gether, we should get closer to the infinite summation value s. Consider the
following definition.

Definition 1.2. Consider a sequence {an} of real numbers and the resulting
sequence of partial sums {sn} given by (1). We we will say (2) converges
if there is an s ∈ R such that, for every ε > 0, there is an N ∈ N so that
n ≥ N implies that |sn − s| < ε.

Otherwise, we will say that the series diverges.
Notice that if the sequence of partial sums converges, we are justified

in writing (3). Recasting this problem as a convergence problem for the
sequence of partial sums {sn} allows us to use the results already established
for more conventional sequences. In particular, since we are working with
real numbers, we may use properties such as monotonicity.

Furthermore, we recognize that convergence is equivalent to the Cauchy
sequence criteria (i.e. the elements in the sequence become arbitrarily close
together). For series, we will have to be careful when recognize what the
sequence elements are which become close together. They are the partial
sums. That is to say, for m > n, we need to consider bounding

|sm − sn| =

∣∣∣∣∣
m∑
k=1

ak −
n∑
k=1

ak

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ .
Adjusting the indexes, the equivalent Cauchy convergence statement for
series is the following.

Theorem 1.1 (Theorem 3.22 in Rudin). The infinite series corresponding
to the sequence {an} converges if and only if, for every ε > 0, there is an
N ∈ N such that m > n ≥ N implies that∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ < ε.
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Corollary 1.1. If the infinite series of the sequence {an} converges to some
value s, then {an} converges to zero.

Proof. Take m = n + 1 in Theorem 1.1. It follows that, for every ε > 0,
there is an N ∈ N such that |am| < ε for m > N . That is to say, if the series
converges to some value, then the terms in the underlying sequence must
converge to zero.

Note: The converse of Corollary 1.1 does not hold in general! That is to say,
it is not enough that an → 0 in order to conclude that sn → s for some s ∈ R.

Let’s consider a few familiar examples.

Example 1: Show that the series with terms an =
1

n
, n ∈ N, diverges.

Solution: There are a number of ways to prove this result. One of the
most basic (because it requires no prior results) is the following. Consider
dividing the sequence into successive groupings of size 2n, n ∈ N, elements.
Specifically, consider the first and second term by themselves, the next two
as a group, the next four as a group, and so on. We have

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

= (1) +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

= (1) +
1

2
+

1

2
+ · · ·

Since we will never run out of groupings of length 2n, no matter how far
along the natural numbers we go, we must conclude that the sequence of
partial sums is not bounded, and therefore (because it is monotone) the se-
ries does not converge. Note that this series does not converge even thought
1
n → 0 as n→∞. �

Example 2: Show that for r ∈ R such that |r| < 1 we have

∞∑
n=0

rn =
1

1− r
.
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Solution: We have seen this result for the geometric series before, so
we will go over the familiar details quickly. We will be careful now, however,
to use the formal definition of series convergence.

We start by generating the sequence of partial sums {sn}. We have

sn =
n∑
k=0

rk = 1 + r + r2 + · · ·+ rn.

Notice that we also have

rsn = r
n∑
k=0

rk = r + r2 + · · ·+ rn + rn+1

so that

(1− r)sn = 1− rn+1 =⇒ sn =
1− rn+1

1− r
.

We now want to prove that the sequence of partial sums converges to

the limit s =
1

1− r
. Take ε > 0. We have

|sn − s| =
∣∣∣∣1− rn+1

1− r
− 1

1− r

∣∣∣∣ =

∣∣∣∣ rn+1

1− r

∣∣∣∣ .
We want to bound this by ε. The intuition is fairly obvious: because |r| < 1,
for any ε > 0 we may choose n sufficiently large so that rn+1 gets vanishingly
small. Formally, we invert the dependence on ε and n. We want∣∣∣∣ rn+1

1− r

∣∣∣∣ < ε ⇐⇒ |r|n+1 < ε|1− r| ⇐⇒ n > log|r| (ε|1− r|)− 1.

Note that the inequality in the logarithm has changed directions as a result
of |r| < 1. It follows that, if we take N > log|r| (ε|1− r|) − 1 and n ≥ N ,
then we have

|sn − s| =
∣∣∣∣ rn+1

1− r

∣∣∣∣ ≤ ∣∣∣∣rN+1

1− r

∣∣∣∣ < ε

and we are done. �

We will not give an exhaustive study of series in the real numbers here.
We will, however, prove some of the basic convergence results which we have
previously seen in various Calculus courses. In particular, we will consider
the comparison and convergence/divergence of p-series. Time-permitting,
we will investigate the well-known ratio and root tests.
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2 Comparison Test

In general, it can be difficult to determine the convergence of series. The
most basic tool for determining whether a series converges or not (and for
proving more advanced results) is to compare to a more basic series which is
known to either converge or diverge. This it not always guaranteed to work,
but under special cases, we may be able to conclude either convergence or
divergence for a given series.

We have the following result.

Theorem 2.1 (Comparison Test). Consider sequences {an} an {bn} and

corresponding series (a)

∞∑
n=1

an and (b)

∞∑
n=1

bn. Suppose there is an N ′ ∈ N

such that:

1. |an| ≤ bn for all n ≥ N ′. Then, if (b) converges, so does (a).

2. an ≥ bn ≥ 0 for all n ≥ N ′. Then if (b) diverges, so does (a).

Proof of 1.: We will use the Cauchy condition for convergence. Since {bn}
converges, we have that, for every ε > 0, there is an N ∈ N such that

m > n ≥ N implies that
m∑

k=n+1

bk < ε. It follows that

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| ≤
m∑

k=n+1

bk < ε

where the first inequality follows by the triangle inequality on the real num-
bers, and the second follows from our assumption. It follows from Theorem

1.1 that
∞∑
n=1

an converges.

Proof of 2.: Suppose that
∞∑
n=1

an converges and conditions of (b) hold. It

would then follow from part (a) that
∞∑
n=1

bn converges, which is a contradic-

tion. The result follows.
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3 p-Series and Applications

Consider the p-series

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · ·

where p > 0. We have already seen that this series diverges for p = 1. How
about other values of p? As motivation, let’s consider the case of p = 2. We
are considering the series

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

We will play a little trick (naturally, it is one that is easy to follow, but
hard to find!). We might notice that we have

1

(n+ 1)2
<

1

n(n+ 1)
=

1

n
− 1

n+ 1

where the final step follows from partial fraction decomposition (although
it is easier to just confirm it by working backwards).

We will now apply the Cauchy criterion for convergence. That is to say,
we consider the summation from k = n+ 1 to m where m > n and wish to
show the result can be bounded. We have

m∑
k=n+1

1

k2
<

(
1

n
− 1

n+ 1

)
+

(
1

n+ 1
− 1

n+ 2

)
+ · · ·+

(
1

m− 1
+

1

m

)
=

1

n
− 1

m

where all the middle terms have cancelled. (A partial sum where the middle
terms cancel in this fashion is called a telescoping series.) We now notice
that, for any ε > 0, if we pick N > 1

ε we have that, for any m > n ≥ N ,∣∣∣∣∣
m∑

k=n+1

1

k2

∣∣∣∣∣ < 1

n
≤ 1

N
< ε.

That is to say, the series satisfies the Cauchy criterion. It follows that the
sequence converges.
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So we have that the p-series diverges for p = 1 and converges for p = 2.
It is a small step further to prove that it diverges for p ≤ 1 and converges
for p ≥ 2 (comparison test!). How about the rest of the values?

We introduce the following preliminary result, known as the Cauchy
Condensation Test.

Theorem 3.1 (Theorem 3.27 in Rudin). Suppose {an} is a sequence of real
numbers such that a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0. Then

∑∞
n=1 an converges if and

only if
∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · · (4)

converges.

Aside from the showing that the convergence of many series depends on
a particular sparse subset of the original series, it is often easier to show
convergence for the sequence (4) than the original one.

Proof. Consider the partial sums

sn =
n∑
k=1

ak and tm =
m∑
k=0

2ma2m .

Notice that, for n < 2m, we have that

sn ≤ a1 + (a2 + a3) + · · ·+ (a2m + · · ·+ a2m+1−1)

≤ a1 + 2a2 + · · ·+ 2ma2m ≤ tm.

It follows that if sn diverges, then tm diverges, and also that if tm converges,
sn converges (by monotonicity).

On the other hand, for n > 2m, we have

sn ≥ a1 + a2 + (a3 + a4) + · · · (a2m−1+1 + · · ·+ a2m)

≥ 1

2
a1 + a2 + 2a4 + · · ·+ 2m−1a2m =

1

2
tm.

It follows that if sn converges, then tn converges, and also that if tm diverges,
sn diverges (again, by monotonicity). We are done.

We are now (finally!) prepared to prove exactly when the p-series con-
verges and diverges.
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Theorem 3.2. The p-series
∞∑
n=1

1

np
diverges if 0 < p ≤ 1 and converges if

p > 1.

Proof. Since for all p > 0 we have

1 ≥ 1

2p
≥ 1

3p
≥ · · · ≥ 0 =⇒ a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0

we may apply the Cauchy Condensation Test. We have have the p-series
converges if and only if

∞∑
k=1

2ka2k

converges, so that we check

∞∑
k=1

2ka2k =
∞∑
k=1

2k
1

(2k)p
=
∞∑
k=1

(
21−p

)k
.

This is a geometric series with parameter r = 21−p. We know this converges
if |r| < 1, which corresponds to p > 1, and diverges for |r| ≥ 1, which
corresponds to p ≥ 1. The proof is complete.

Example: Prove that the series with terms

an =
n

n2 − 1

for n ≥ 2 diverges.

Solution: We notice that the terms of the sequence {an} become more
and more like { 1n} as n grows. Since the p-series with p = 1 diverges, we
suspect some form of comparison may be in order. We check that

n

n2 − 1
− 1

n
=
n2 − n2 + 1

n(n2 − 1)
=

1

n(n2 − 1)
> 0

for all n ≥ 2. It follows that

n

n2 − 1
>

1

n
.

By the comparison test, we conclude that

∞∑
n=2

n

n2 − 1

diverges.
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4 Ratio and Root Tests (Time-Permitting)

In previous calculus courses, we have analyzed the convergence and diver-
gence of series by appealing to the ratio and root tests. We have probably,
however, done these with an emphasis on application rather than justifica-
tion. We now fill in this gap.

Theorem 4.1 (Ratio Test). Consider a sequence {an} with a corresponding

series
∞∑
n=1

an. Define R = lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ and r = lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣. Then:

(a) If R < 1 then the series converges.

(b) If r > 1 then the series diverges.

The key distinction with previous definitions is that we now consider the
more general lim inf and lim sup instead of the standard lim. This allows us
to handle sequences which do not necessarily have a limit.

Proof. Suppose (a) holds. That is, suppose there is an α such that R ≤ α <
1 and

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
sup
m≥n

∣∣∣∣am+1

am

∣∣∣∣) ≤ α.
It follows that there is an N ∈ N so that, for n ≥ N , we have

sup
m≥n

∣∣∣∣am+1

am

∣∣∣∣ ≤ α =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≤ α
for all n ≥ N . It follows that

|an| ≤ α|an−1| ≤ α2|an−2| ≤ α3|an−3|
=⇒ |an| ≤ αn−N |aN |.

Now consider the series with terms bn = αn−N |aN |. We have

∞∑
n=N

bn =
∞∑
n=N

αn−N |aN | =
|aN |
αN

∞∑
n=N

αn =
|aN |
αN

αN

1− α
=
|aN |
1− α

since the series of geometric with parameter β < 1. It follows by the com-
parison theorem that the series with terms an converges.

Now suppose (b) holds. It follows that there is an r ≥ α > 1 such that

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
inf
m≥n

∣∣∣∣am+1

am

∣∣∣∣) ≥ α.
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It follows that there is an N ∈ N so that, for n ≥ N , we have

inf
m≥n

∣∣∣∣am+1

am

∣∣∣∣ ≥ α =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≥ α
for all n ≥ N . It follows that

|an| ≥ α|an−1| ≥ α2|an−2| ≥ α3|an−3|
=⇒ |an| ≥ αn−N |aN | > 0.

Since it is clearly impossible that lim
n→∞

an = 0 in this case, and that this is

necessarily for convergence, we have that the series diverges.

Theorem 4.2 (Root Test). Consider a sequence {an} with a corresponding

series
∞∑
n=1

an. Define α = lim supn→∞
n
√
|an|. Then:

(a) If α < 1 then the series converges.

(b) If α > 1 then the series diverges.

Proof. Suppose (a) is satisfied. Following the method of Theorem 4.1, we
have that there is an α satisfying 0 ≤ α < 1 and an N ∈ N so that

n
√
|an| < α

for all n ≥ N . It follows immediately that

|an| < αn

and, since we know that
∞∑
n=N

αn =
αN

1− α

since it is a geometric series with parameter |α| < 1. It follows by the
comparison theorem that the series with terms an converges.

Now suppose (b) holds. It follows that there is an α > 1 and a subse-
quence {nk}, k ∈ N, such that

lim
k→∞

nk

√
|ank
| = α.

Notably, we can pick ε > 0 sufficiently small so that

1 ≤ α− ε < nk

√
|ank
| < α+ ε =⇒ 1 ≤ (α− ε)nk < |ank

|.

It follows that there are an infinite number of terms in an > 1 so that
lim
n→∞

an = 0 is not possible. Since this is a necessarily condition for the

convergence of the corresponding series, we have that the series diverges.
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